Phylogenetic Support

Statistical Testing of Trees

Finlay Maguire March 27, 2018

FCS, Dalhousie

- 1. Introduction
- 2. Evolutionary Model Testing
- 3. Branch Support Testing
- 4. Comparing Trees
- 5. Conclusion

Introduction

Phylogenies are hypotheses

Cid

- Does another model of sequence evolution fit the data better?
- How well supported are individual branches in a tree?
- Does another tree explain the data better?

• Bad data

- Bad data
- Sampling error

- Bad data
- Sampling error
- Misleading evolutionary events

- Bad data
- Sampling error
- Misleading evolutionary events
- Misspecified models

- Bad data
- Sampling error
- Misleading evolutionary events
- Misspecified models
- Inappropriate inference

Saturation

Misleading Signal: Hidden Paralogy/Incomplete Sampling

[Leonard, 2010]

Misleading Signal: Horizontal Gene Transfer

[Leonard, 2010]

Misleading Signal: Horizontal Gene Transfer

9

Ask for a tree get a tree.

Tree not always correct paradigm

Ask for a tree get a tree.

Reanalysis of [Marwick, 2012] from http://phylonetworks.blogspot.ca/2013/02/

Evolutionary Model Testing

Sequence Evolution Models

http: //carrot.mcb.uconn.edu/~olgazh/bioinf2010/class24.html

Sequence Evolution Models

	HIV-W _m	HIV-W _m +F	HIV-B _m	HIV-B _m +F	REV-1 step	JTT+F	л	WAG+F	MtMAM+F	rtREV	mtREV 24+F	WAG	Dayhoff+F	rtREV+F	Dayhoff	Equal Input	mtREV 24	mtMAM	REV
HIV-Wm	0	45	44	46	47	46	47	47	47	46	47	47	47	47	47	47	47	47	47
HIV-Wm+F	1	0	45	46	46	46	46	47	47	47	47	47	47	47	47	47	47	47	47
HIV-Bm	0	1	0	15	43	30	39	43	46	46	46	46	46	47	47	47	47	47	47
HIV-Bm+F	0	0	15	0	43	37	40	44	47	46	47	46	47	47	47	47	47	47	47
REV-1 step	0	1	4	4	0	6	6	11	31	32	22	14	17	24	28	35	41	43	47
JTT+F	0	0	8	5	40	0	28	47	46	46	47	47	47	47	47	47	47	47	47
лт	0	0	3	3	38	4	0	35	44	46	45	47	47	46	47	47	47	47	47
WAG+F	0	0	3	1	34	0	5	0	43	44	43	39	42	46	47	47	47	47	47
MtMAM+F	0	0	0	0	16	0	0	2	0	14	2	6	4	7	12	31	47	47	46
rtREV	0	0	0	0	12	0	1	2	29	0	8	1	3	3	4	39	47	47	47
MtREV 24+F	0	0	0	0	18	0	1	1	41	37	0	7	7	22	25	47	47	47	47
WAG	0	0	0	1	29	0	0	2	40	45	35	0	30	39	43	46	47	47	47
Dayhoff+F	0	0	0	0	26	0	0	0	39	43	29	8	0	36	43	46	47	47	47
rtREV+F	0	0	0	0	19	0	0	0	35	41	20	2	1	0	20	46	47	47	47
Dayhoff	0	0	0	0	18	0	0	0	32	39	17	0	1	17	0	44	47	47	47
Equal Input	0	0	0	0	11	0	0	0	14	2	0	1	0	1	2	0	41	46	47
mtREV 24	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	4	0	43	45
mtMAM	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	1	0	44
REV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	3	0

¹Models are arranged by decreasing rank performance (see Table 2) doi:10.1371/journal.pone.0000503.t003

[Nickle et al., 2007]

• Increased Inaccuracy (wrong tree more often)

- Increased Inaccuracy (wrong tree more often)
- Inconsistency (adding more data converges to wrong tree)

- Increased Inaccuracy (wrong tree more often)
- Inconsistency (adding more data converges to wrong tree)
- Wrong branch lengths (important for certain analyses)

- Increased Inaccuracy (wrong tree more often)
- Inconsistency (adding more data converges to wrong tree)
- Wrong branch lengths (important for certain analyses)
- Wrong tree support values

· $L(\tau, \theta) = P(X|\tau, \theta)$

- $L(\tau,\theta) = P(X|\tau,\theta)$
- With ML inference we are finding the maximum-likelihood estimate of τ and θ

- $L(\tau,\theta) = P(X|\tau,\theta)$
- With ML inference we are finding the maximum-likelihood estimate of τ and θ
- i.e. $\hat{\tau}, \hat{\theta} = \operatorname{argmax}_{\tau, \theta} L(\tau, \theta)$

- $L(\tau,\theta) = P(X|\tau,\theta)$
- With ML inference we are finding the maximum-likelihood estimate of τ and θ
- i.e. $\hat{\tau}, \hat{\theta} = \operatorname{argmax}_{\tau, \theta} L(\tau, \theta)$
- Therefore, to compare two models we can use a likelihood ratio test (LRT $\delta)$

- $L(\tau,\theta) = P(X|\tau,\theta)$
- With ML inference we are finding the maximum-likelihood estimate of τ and θ
- i.e. $\hat{\tau}, \hat{\theta} = \operatorname{argmax}_{\tau, \theta} L(\tau, \theta)$
- Therefore, to compare two models we can use a likelihood ratio test (LRT $\delta)$
- $\delta = 2(ln(L_1) ln(L_0))$

- $L(\tau,\theta) = P(X|\tau,\theta)$
- With ML inference we are finding the maximum-likelihood estimate of τ and θ
- i.e. $\hat{\tau}, \hat{\theta} = \operatorname{argmax}_{\tau, \theta} L(\tau, \theta)$
- Therefore, to compare two models we can use a likelihood ratio test (LRT $\delta)$
- $\delta = 2(ln(L_1) ln(L_0))$
- Limitations: nested models (i.e. hLRT), order matters, no regularisation

• Akaike Information Criterion (AIC), penalising number of parameters:

- Akaike Information Criterion (AIC), penalising number of parameters:
- · AIC = -2ln(L) + 2K

- Akaike Information Criterion (AIC), penalising number of parameters:
- AIC = -2ln(L) + 2K
- However, this penalises all high K models even if sample size is large too.

- Akaike Information Criterion (AIC), penalising number of parameters:
- AIC = -2ln(L) + 2K
- However, this penalises all high K models even if sample size is large too.
- Corrected Akaike Information Criterion (AICc)

- Akaike Information Criterion (AIC), penalising number of parameters:
- AIC = -2ln(L) + 2K
- However, this penalises all high K models even if sample size is large too.
- Corrected Akaike Information Criterion (AICc)
- AICc = AIC + $\frac{2K(K+1)}{n-K-1}$

- Akaike Information Criterion (AIC), penalising number of parameters:
- AIC = -2ln(L) + 2K
- However, this penalises all high K models even if sample size is large too.
- Corrected Akaike Information Criterion (AICc)
- AICc = AIC + $\frac{2K(K+1)}{n-K-1}$
- Alternatively, there is the Bayesian Information Criterion (**BIC**):
Information Criterion

- Akaike Information Criterion (AIC), penalising number of parameters:
- AIC = -2ln(L) + 2K
- However, this penalises all high K models even if sample size is large too.
- Corrected Akaike Information Criterion (AICc)
- AICc = AIC + $\frac{2K(K+1)}{n-K-1}$
- Alternatively, there is the Bayesian Information Criterion (**BIC**):
- BIC = -2ln(L) + Kln(n)

Information Criterion

- Akaike Information Criterion (AIC), penalising number of parameters:
- AIC = -2ln(L) + 2K
- However, this penalises all high K models even if sample size is large too.
- Corrected Akaike Information Criterion (AICc)
- AICc = AIC + $\frac{2K(K+1)}{n-K-1}$
- Alternatively, there is the Bayesian Information Criterion (**BIC**):
- BIC = -2ln(L) + Kln(n)
- Decision Theory (DT) risk minimisation approach.

• What if everything fits poorly?

- What if everything fits poorly?
- Information criterion test relative goodness of fit instead of absolute

- What if everything fits poorly?
- Information criterion test relative goodness of fit instead of absolute
- Parametric Bootstrapping/Posterior Predictive Simulation

- What if everything fits poorly?
- Information criterion test relative goodness of fit instead of absolute
- Parametric Bootstrapping/Posterior Predictive Simulation
- If the model is reasonable then data simulated under should resemble the empirical data

Branch Support Testing

Bootstrapping in General

Bootstrapping Phylogenies

Slide from Joe Felsenstein

(and so on)

Bootstrapping Phylogenies

Bootstrapping Phylogenies

The majority-rule consensus tree

Combining the results

22

• Randomly reweighing the sites in an alignments

- Randomly reweighing the sites in an alignments
- Probability of a site being excluded $1 \frac{1}{n}n$

- Randomly reweighing the sites in an alignments
- Probability of a site being excluded $1 \frac{1}{n}n$
- Asymptotically approximately 0.36

- Randomly reweighing the sites in an alignments
- Probability of a site being excluded $1 \frac{1}{n}n$
- Asymptotically approximately 0.36
- Goal to simulate an infinite population (number of alignment columns)

• Typically underestimates the true probabilities

- Typically underestimates the true probabilities
- i.e biased but conservative

- Typically underestimates the true probabilities
- i.e biased but conservative
- Computationally demanding

- Typically underestimates the true probabilities
- i.e biased but conservative
- Computationally demanding
- Assumes independence of sites

- Typically underestimates the true probabilities
- i.e biased but conservative
- Computationally demanding
- Assumes independence of sites
- Relies on good input data

- Typically underestimates the true probabilities
- i.e biased but conservative
- Computationally demanding
- Assumes independence of sites
- Relies on good input data
- Only answers to what extent does input data support a given part of the tree

- Simulate data sets of this size assuming the estimate of the tree is the truth
- Key for many more sophisticated tests.
- Can be used to generate *p*-values, but non-trivial

• Resampling estimated log-likelihoods (RELL)

- Resampling estimated log-likelihoods (RELL)
- Instead of re-doing the full ML inference just re-sample the site *ln(L)* values and sum

- Resampling estimated log-likelihoods (RELL)
- Instead of re-doing the full ML inference just re-sample the site *ln(L)* values and sum
- Rapid Bootstraps (RBS)

- Resampling estimated log-likelihoods (RELL)
- Instead of re-doing the full ML inference just re-sample the site *ln(L)* values and sum
- Rapid Bootstraps (RBS)
- Ultrafast Bootstraps (UFBoot)

• Comparing the 3 nearest NNIs to a given branch:

- Comparing the 3 nearest NNIs to a given branch:
- Parametric **aLRT**: χ^2 of δ for branch vs. closest NNIs

- Comparing the 3 nearest NNIs to a given branch:
- Parametric **aLRT**: χ^2 of δ for branch vs. closest NNIs
- Non-parametric **SH-aLRT** based on RELL

- Comparing the 3 nearest NNIs to a given branch:
- Parametric **aLRT**: χ^2 of δ for branch vs. closest NNIs
- Non-parametric **SH-aLRT** based on RELL
- · aBayes:

- Comparing the 3 nearest NNIs to a given branch:
- Parametric **aLRT**: χ^2 of δ for branch vs. closest NNIs
- Non-parametric **SH-aLRT** based on RELL
- aBayes:
- $P(T_c \mid X) = \frac{P(X|T_c)P(T_c)}{\sum_i^2 = 0P(X||T_i)P(T_i)}$ with flat prior $P(T_0) = P(T_1) = P(T_2)$

Comparing Trees

How to compare competing hypotheses?

How to compare competing hypotheses?

Simplistic Comparison

• 4 sites favour the red tree, 2 favour the blue

- 4 sites favour the red tree, 2 favour the blue
- $\binom{n}{k}p^{k}(1-p)^{n-k}$

- 4 sites favour the red tree, 2 favour the blue
- $\binom{n}{k} p^{k} (1-p)^{n-k}$
- 4 out of 6 p = 0.6875

- 4 sites favour the red tree, 2 favour the blue
- $\binom{n}{k}p^k(1-p)^{n-k}$
- 4 out of 6 p = 0.6875
- 40 out of 60 p = 0.0124

- 4 sites favour the red tree, 2 favour the blue
- $\binom{n}{k} p^{k} (1-p)^{n-k}$
- 4 out of 6 *p* = 0.6875
- 40 out of 60 *p* = 0.0124
- 400 out of 600 $p = 2.3 * 10^{-16}$

•
$$\mu = (-5.2 + 3.1 + 0.9 + 6.6 + 0.3 - 0.2)/6 = 0.916$$

•
$$\mu = (-5.2 + 3.1 + 0.9 + 6.6 + 0.3 - 0.2)/6 = 0.916$$

• $\sigma^2 = 15.22$

•
$$\mu = (-5.2 + 3.1 + 0.9 + 6.6 + 0.3 - 0.2)/6 = 0.916$$

- $\sigma^2 = 15.22$ $t = \frac{\mu}{\sigma^2} * \sqrt{N} = 0.148$

- $\mu = (-5.2 + 3.1 + 0.9 + 6.6 + 0.3 0.2)/6 = 0.916$
- $\sigma^2 = 15.22$
- $t = \frac{\mu}{\sigma^2} * \sqrt{N} = 0.148$
- therefore: p = 0.888 under 5*d.f.*

• Null: if no sampling error (infinite data) T_1 and T_2 would explain the data equally well.

- Null: if no sampling error (infinite data) *T*₁ and *T*₂ would explain the data equally well.
- $\delta(T_1, T_2 | X) = 2 [\ln L(T_1 | X) \ln L(T_2 | X)]$

- Null: if no sampling error (infinite data) *T*₁ and *T*₂ would explain the data equally well.
- $\delta(T_1, T_2 | X) = 2 [\ln L(T_1 | X) \ln L(T_2 | X)]$
- Expectation under null $\mathbb{E} \left[\delta(T_1, T_2 \mid X) \right] = 0$

- Null: if no sampling error (infinite data) *T*₁ and *T*₂ would explain the data equally well.
- $\delta(T_1, T_2 | X) = 2 [\ln L(T_1 | X) \ln L(T_2 | X)]$
- Expectation under null $\mathbb{E} \left[\delta(T_1, T_2 \mid X) \right] = 0$
- Why can't we just use χ^2 to get a critical value for δ ?

- Null: if no sampling error (infinite data) *T*₁ and *T*₂ would explain the data equally well.
- $\delta(T_1, T_2 | X) = 2 [\ln L(T_1 | X) \ln L(T_2 | X)]$
- Expectation under null $\mathbb{E} [\delta(T_1, T_2 \mid X)] = 0$
- Why can't we just use χ^2 to get a critical value for δ ?
- Tree space is difficult.

- Many avenues:
- Non-parametric bootstrapping
- Parametric bootstrapping
- Related approaches.

• First, winning sites test

- First, winning sites test
- $H_0: [\ln L(T_1 \mid X) \ln L(T_2 \mid X)] = \mathbb{E}[\delta(T_1, T_2)] = 0$

- First, winning sites test
- $H_0: [\ln L(T_1 \mid X) \ln L(T_2 \mid X)] = \mathbb{E}[\delta(T_1, T_2)] = 0$
- $H_a: \mathbb{E}[\delta(T_1, T_2)] \neq 0$

- First, winning sites test
- $H_0: [\ln L(T_1 \mid X) \ln L(T_2 \mid X)] = \mathbb{E}[\delta(T_1, T_2)] = 0$
- $H_a: \mathbb{E}[\delta(T_1, T_2)] \neq 0$
- Non-parametric Bootstrap to estimate Null variance

- First, winning sites test
- H_0 : $[\ln L(T_1 \mid X) \ln L(T_2 \mid X)] = \mathbb{E}[\delta(T_1, T_2)] = 0$
- $H_a: \mathbb{E}[\delta(T_1, T_2)] \neq 0$
- Non-parametric Bootstrap to estimate Null variance
- Test $\mathbb{E} \left[\delta(T_1, T_2) \right]$ two-tail *t*-test

- First, winning sites test
- H_0 : $[\ln L(T_1 \mid X) \ln L(T_2 \mid X)] = \mathbb{E}[\delta(T_1, T_2)] = 0$
- $H_a: \mathbb{E}[\delta(T_1, T_2)] \neq 0$
- Non-parametric Bootstrap to estimate Null variance
- Test $\mathbb{E} \left[\delta(T_1, T_2) \right]$ two-tail *t*-test
- Due to centring assumption can't be used for optimal tree i.e. selection bias

- First, winning sites test
- H_0 : $[\ln L(T_1 \mid X) \ln L(T_2 \mid X)] = \mathbb{E}[\delta(T_1, T_2)] = 0$
- $H_a: \mathbb{E}[\delta(T_1, T_2)] \neq 0$
- Non-parametric Bootstrap to estimate Null variance
- Test $\mathbb{E} \left[\delta(T_1, T_2) \right]$ two-tail *t*-test
- Due to centring assumption can't be used for optimal tree i.e. selection bias
- Can't handle multiple comparisons.

· Shimodaira-Hasegawa Test

- \cdot Shimodaira-Hasegawa Test
- Compares candidate tree sets

- Shimodaira-Hasegawa Test
- \cdot Compares candidate tree sets
- $H_0 =$ all topologies equally good

- \cdot Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- \cdot Very conservative when the number of candidate trees is large

- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.

- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- Approximately Unbiased Test

- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- \cdot Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- Approximately Unbiased Test
- Achieves weighted by varying bootstrap size for each tree.

- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- \cdot Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- Approximately Unbiased Test
- Achieves weighted by varying bootstrap size for each tree.
- Better for larger comparisons, can have issues with P-space curvature.

- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- \cdot Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- · Approximately Unbiased Test
- Achieves weighted by varying bootstrap size for each tree.
- Better for larger comparisons, can have issues with P-space curvature.
- Swofford-Olsen-Waddell-Hillis same idea but uses parametric bootstraps instead.

- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- \cdot Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- · Approximately Unbiased Test
- Achieves weighted by varying bootstrap size for each tree.
- Better for larger comparisons, can have issues with P-space curvature.
- Swofford-Olsen-Waddell-Hillis same idea but uses parametric bootstraps instead.
- Sensitive to model misspecification.

Conclusion

• Tree space makes for some interesting problems that takes away some standard statistical tricks.

- Tree space makes for some interesting problems that takes away some standard statistical tricks.
- Model selection typically relies on multiple metrics

- Tree space makes for some interesting problems that takes away some standard statistical tricks.
- Model selection typically relies on multiple metrics
- Bootstrapping is a slow, biased but conservative way to estimate the support for a given branch in your tree.
- Tree space makes for some interesting problems that takes away some standard statistical tricks.
- Model selection typically relies on multiple metrics
- Bootstrapping is a slow, biased but conservative way to estimate the support for a given branch in your tree.
- Likelihood Testing is powerful but must be used with care.

- Tree space makes for some interesting problems that takes away some standard statistical tricks.
- Model selection typically relies on multiple metrics
- Bootstrapping is a slow, biased but conservative way to estimate the support for a given branch in your tree.
- Likelihood Testing is powerful but must be used with care.
- Comparing trees directly is non-trivial due to tree-space.

Questions?

Leonard, G. (2010).

Development of fusion and duplication finder blast (fdfblast): a systematic tool to detect differentially distributed gene fusions and resolve trifurcations in the tree of life.

📔 Marwick, B. (2012).

A cladistic evaluation of ancient thai bronze buddha images: six tests for a phylogenetic signal in the griswold collection. *Connecting empires*, pages 159–176.

Nickle, D. C., Heath, L., Jensen, M. A., Gilbert, P. B., Mullins, J. I., and Pond, S. L. K. (2007). **Hiv-specific probabilistic models of protein evolution.**

PLoS One, 2(6):e503.

Richards, T. A., Soanes, D. M., Foster, P. G., Leonard, G., Thornton, C. R., and Talbot, N. J. (2009). **Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi.** *The Plant Cell*, 21(7):1897–1911.