Rapid Identification of AMR Determinants from Metagenomic Samples

AMRtime Progress Report

Finlay Maguire

June 22, 2018

Faculty of Computer Science, Dalhousie University

Table of contents

- 1. Overview
- 2. Training Data
- 3. Read filtering
- 4. Sensitive Homology Search
- 5. Variant Models
- 6. Summary
- 7. Acknowledgements

Overview

• https://card.mcmaster.ca/ (Jia et al., 2016) as of June 2018:

- https://card.mcmaster.ca/ (Jia et al., 2016) as of June 2018:
- Built around Antibiotic Resistance Ontology (ARO): 3996 terms

- https://card.mcmaster.ca/ (Jia et al., 2016) as of June 2018:
- Built around Antibiotic Resistance Ontology (ARO): 3996 terms
- 2536 AMR Detection Models with manually curated criteria:

- https://card.mcmaster.ca/ (Jia et al., 2016) as of June 2018:
- Built around Antibiotic Resistance Ontology (ARO): 3996 terms
- 2536 AMR Detection Models with manually curated criteria:
 - Homology e.g. NDM beta-lactamases, aminoglycoside acetyltransferase

- https://card.mcmaster.ca/ (Jia et al., 2016) as of June 2018:
- Built around Antibiotic Resistance Ontology (ARO): 3996 terms
- 2536 AMR Detection Models with manually curated criteria:
 - Homology e.g. NDM beta-lactamases, aminoglycoside acetyltransferase
 - Protein Variant e.g. GyrA fluoroquinolone mutation, FoIP sulfonamide mutation

- https://card.mcmaster.ca/ (Jia et al., 2016) as of June 2018:
- Built around Antibiotic Resistance Ontology (ARO): 3996 terms
- 2536 AMR Detection Models with manually curated criteria:
 - Homology e.g. NDM beta-lactamases, aminoglycoside acetyltransferase
 - Protein Variant e.g. GyrA fluoroquinolone mutation, FoIP sulfonamide mutation
 - rRNA gene variants e.g. Mycobacterium aminoglycoside resistance

- https://card.mcmaster.ca/ (Jia et al., 2016) as of June 2018:
- Built around Antibiotic Resistance Ontology (ARO): 3996 terms
- 2536 AMR Detection Models with manually curated criteria:
 - Homology e.g. NDM beta-lactamases, aminoglycoside acetyltransferase
 - Protein Variant e.g. GyrA fluoroquinolone mutation, FoIP sulfonamide mutation
 - rRNA gene variants e.g. Mycobacterium aminoglycoside resistance
 - Efflux pump e.g. AcrAB-ToIC, MexAB-OprM mutations

- https://card.mcmaster.ca/ (Jia et al., 2016) as of June 2018:
- Built around Antibiotic Resistance Ontology (ARO): 3996 terms
- 2536 AMR Detection Models with manually curated criteria:
 - Homology e.g. NDM beta-lactamases, aminoglycoside acetyltransferase
 - Protein Variant e.g. GyrA fluoroquinolone mutation, FoIP sulfonamide mutation
 - rRNA gene variants e.g. Mycobacterium aminoglycoside resistance
 - Efflux pump e.g. AcrAB-ToIC, MexAB-OprM mutations
 - Gene cluster e.g. Van glycopeptide resistance clusters

- https://card.mcmaster.ca/ (Jia et al., 2016) as of June 2018:
- Built around Antibiotic Resistance Ontology (ARO): 3996 terms
- 2536 AMR Detection Models with manually curated criteria:
 - Homology e.g. NDM beta-lactamases, aminoglycoside acetyltransferase
 - Protein Variant e.g. GyrA fluoroquinolone mutation, FoIP sulfonamide mutation
 - rRNA gene variants e.g. Mycobacterium aminoglycoside resistance
 - Efflux pump e.g. AcrAB-ToIC, MexAB-OprM mutations
 - Gene cluster e.g. Van glycopeptide resistance clusters
- Resistance Gene Identifier (RGI): contigs, predicted genes and merged metagenomic reads

- https://card.mcmaster.ca/ (Jia et al., 2016) as of June 2018:
- Built around Antibiotic Resistance Ontology (ARO): 3996 terms
- 2536 AMR Detection Models with manually curated criteria:
 - Homology e.g. NDM beta-lactamases, aminoglycoside acetyltransferase
 - Protein Variant e.g. GyrA fluoroquinolone mutation, FolP sulfonamide mutation
 - rRNA gene variants e.g. Mycobacterium aminoglycoside resistance
 - Efflux pump e.g. AcrAB-ToIC, MexAB-OprM mutations
 - Gene cluster e.g. Van glycopeptide resistance clusters
- Resistance Gene Identifier (RGI): contigs, predicted genes and merged metagenomic reads
- CARDPredicted prevalence dataset

modified from https://www.gatc-biotech.com/en/expertise/genomics/metagenome-analysis.html

Key difficulties:

• Variation in abundance and diversity

modified from https://www.gatc-biotech.com/en/expertise/genomics/metagenome-analysis.html

- Variation in abundance and diversity
- Short fragmentary data

modified from https://www.gatc-biotech.com/en/expertise/genomics/metagenome-analysis.html

- Variation in abundance and diversity
- Short fragmentary data
- Large amounts of data

modified from https://www.gatc-biotech.com/en/expertise/genomics/metagenome-analysis.html

- Variation in abundance and diversity
- Short fragmentary data
- Large amounts of data
- Compositionality

modified from https://www.gatc-biotech.com/en/expertise/genomics/metagenome-analysis.html

- Variation in abundance and diversity
- Short fragmentary data
- Large amounts of data
- Compositionality
- Spare and imbalanced labels

AMRtime Structure

Training Data

Determinants are scarce

Determinants are imbalanced

AMR sequence space is biased

Read filtering

- BLASTX (Gish et al., 1993)
- DIAMOND (Buchfink et al., 2015)
- PALADIN (Westbrook et al., 2017)
- MMSeqs2 (Steinegger and Söding, 2017)

How computationally efficient are they?

What about in terms of memory?

Is there a cap on overall performance?

What about to hit any ARO?

But what about individual ARO performance?

• Enterococcus faecalis liaS mutant conferring daptomycin resistance (AE016830.1):

- Enterococcus faecalis liaS mutant conferring daptomycin resistance (AE016830.1):
 - Protein 2790824-2789724
- Enterococcus faecalis liaS mutant conferring daptomycin resistance (AE016830.1):
 - Protein 2790824-2789724
 - DNA 1-732

- Enterococcus faecalis liaS mutant conferring daptomycin resistance (AE016830.1):
 - Protein 2790824-2789724
 - DNA 1-732
- OXA-2 (M95287.4):

- Enterococcus faecalis liaS mutant conferring daptomycin resistance (AE016830.1):
 - Protein 2790824-2789724
 - DNA 1-732
- OXA-2 (M95287.4):
 - Protein 2456-3280

- Enterococcus faecalis liaS mutant conferring daptomycin resistance (AE016830.1):
 - Protein 2790824-2789724
 - DNA 1-732
- OXA-2 (M95287.4):
 - Protein 2456-3280
 - DNA 1-828

- Enterococcus faecalis liaS mutant conferring daptomycin resistance (AE016830.1):
 - Protein 2790824-2789724
 - DNA 1-732
- OXA-2 (M95287.4):
 - Protein 2456-3280
 - DNA 1-828
- Acinetobacter OprD conferring resistance to imipenem (CP006768.1):

- Enterococcus faecalis liaS mutant conferring daptomycin resistance (AE016830.1):
 - Protein 2790824-2789724
 - DNA 1-732
- OXA-2 (M95287.4):
 - Protein 2456-3280
 - DNA 1-828
- Acinetobacter OprD conferring resistance to imipenem (CP006768.1):
 - Protein 3513470-3514777

- Enterococcus faecalis liaS mutant conferring daptomycin resistance (AE016830.1):
 - Protein 2790824-2789724
 - DNA 1-732
- OXA-2 (M95287.4):
 - Protein 2456-3280
 - DNA 1-828
- Acinetobacter OprD conferring resistance to imipenem (CP006768.1):
 - Protein 3513470-3514777
 - DNA 3514887-3515414

• 11 AROs protein not detected from DNA

- 11 AROs protein not detected from DNA
- 2 AROs different top protein hit from DNA

- 11 AROs protein not detected from DNA
- 2 AROs different top protein hit from DNA
- Warnings: 119 AROs with different top protein but ID% > 99

- 11 AROs protein not detected from DNA
- 2 AROs different top protein hit from DNA
- Warnings: 119 AROs with different top protein but ID% > 99
- Warnings: 2 AROs with ID% < 99 to correct protein

Sensitive Homology Search

• Raw sequence

- Raw sequence
- Filtering homology search family similarity/dissimilarity

- Raw sequence
- Filtering homology search family similarity/dissimilarity
- Manual feature extraction (GC/TNF/compositional)

- Raw sequence
- Filtering homology search family similarity/dissimilarity
- Manual feature extraction (GC/TNF/compositional)
- One-hot K-mer representation

- Raw sequence
- Filtering homology search family similarity/dissimilarity
- Manual feature extraction (GC/TNF/compositional)
- One-hot K-mer representation
- K-mer embeddings (DNA2vec/BioVec)

Variant Models

Ribosomal Variant Models

- MetaRNA (Huang et al., 2009)
- Ribopicker (Schmieder et al., 2011)
- SortmeRNA (Kopylova et al., 2012)
- 77 models
- Reads simulated from the underlying 30 species reference genomes

Identifying Ribosomal Reads

Identifying Ribosomal Reads

Identifying Ribosomal Reads

Species Specific Recall

Proportion of Reads

Identifying Taxonomy

True label

Borrelia burgdorferi	26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		- 150
Brachyspira hyodysenteriae	1																												0		
Chlamydia psittaci	0																												0		
Chlamydia trachomatis	0																												0		
Chlamydomonas reinhardtii	1			0																									0		
Escherichia coli	0					129	0																						0		120
Halobacterium sp.	0																												0		- 120
Helicobacter pylori	1																												0		
Moraxella catarrhalis	0								68																				0		
Mycobacterium abscessus	0																														
Mycobacterium avium	0																												0		
Mycobacterium chelonae	0																												0		- 90
Mycobacterium intracellulare	0																												0		
Mycobacterium kansasii	0																												1		
Mycobacterium smegmatis	0														46														0		
Mycobacterium tuberculosis	0														0														0		
Mycoplasma fermentans	0															0													0		
Mycoplasma gallisepticum	0																0	41											0		- 60
Mycoplasma hominis	0																	0											0		
Mycoplasma pneumoniae	0																			22	0								0		
Neisseria gonorrhoeae	0																			0		8							0		
Neisseria meningitidis	0																			0	23	76	1						0		
Pasteurella multocida	0																					1	151	0					0		
Propionibacterium acnes	0																						0	62	0				0		- 30
Propionibacterium freudenreich	0					0																			41	0			0		
Salmonella enterica	0					36																				149	0		0		
Staphylococcus aureus	3																										88	0	0		
Streptococcus pneumoniae	0	0	0	0			0		0		0					0		0		0		0			0	0		85	0		
Streptomyces ambofaciens	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	147		- 0
																				633											

Predicted label

28

Some are relatively easy

Correct index:390 species:Streptomyces ambofaciens

Some are group ambiguous

Misspredict index:259 species:Mycobacterium chelonae

Probably a Mycobacterium?

Others are just a toss-up

Ambiguity in classification

33

- Mapping reads to reference to assess presence or absence of mutation related SNP
- Comparison of whole pipeline with just direct mapping to database of ribosomal sequences and SNP calling approaches.
- Tuning of sensitivity for number of potential SNPs required to make a prediction of AMR.

Summary

• AMRtime still not a 'fait accompli'

- AMRtime still not a 'fait accompli'
- Filtering analysis possibly needs redone for fixed CARD

- AMRtime still not a 'fait accompli'
- Filtering analysis possibly needs redone for fixed CARD
- False positive analysis pending for best settings
- AMRtime still not a 'fait accompli'
- Filtering analysis possibly needs redone for fixed CARD
- False positive analysis pending for best settings
- Framework and code developed for sensitive homology classification but optimisation and evaluation work still required

- AMRtime still not a 'fait accompli'
- Filtering analysis possibly needs redone for fixed CARD
- False positive analysis pending for best settings
- Framework and code developed for sensitive homology classification but optimisation and evaluation work still required
- Not shown but preliminary family level classification shows 100x improvements over previous ARO attempts

- AMRtime still not a 'fait accompli'
- Filtering analysis possibly needs redone for fixed CARD
- False positive analysis pending for best settings
- Framework and code developed for sensitive homology classification but optimisation and evaluation work still required
- Not shown but preliminary family level classification shows 100x improvements over previous ARO attempts
- Ribosomal Variant Model work progressing well with full pipeline metrics available soon.

Acknowledgements

- Zhou Zhilei
- Brian Alcock, Amos Raphenya, Kara Tsang
- Rob Beiko, Fiona Brinkman and Andrew McArthur
- Funding: Genome Canada and a NERC Undergraduate Student Research Award

References

- Buchfink, B., Xie, C., and Huson, D. H. (2015). Fast and sensitive protein alignment using diamond. *Nature methods*, 12(1):59.
- Gish, W. et al. (1993). Identification of protein coding regions by database similarity search. *Nature genetics*, 3(3):266.
- Huang, Y., Gilna, P., and Li, W. (2009). Identification of ribosomal rna genes in metagenomic fragments. *Bioinformatics*, 25(10):1338–1340.
- Jia, B., Raphenya, A. R., Alcock, B., Waglechner, N., Guo, P., Tsang, K. K., Lago, B. A., Dave, B. M., Pereira, S., Sharma, A. N., et al. (2016). Card 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. *Nucleic acids research*, page gkw1004.

Kopylova, E., Noé, L., and Touzet, H. (2012). Sortmerna: fast and accurate filtering of ribosomal rnas in metatranscriptomic data. *Bioinformatics*, 28(24):3211–3217.

- Schmieder, R., Lim, Y. W., and Edwards, R. (2011). Identification and removal of ribosomal rna sequences from metatranscriptomes. *Bioinformatics*, 28(3):433–435.
- Steinegger, M. and Söding, J. (2017). Mmseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. *Nature biotechnology*, 35(11):1026.
- Westbrook, A., Ramsdell, J., Schuelke, T., Normington, L., Bergeron, R. D., Thomas, W. K., and MacManes, M. D. (2017). Paladin: protein alignment for functional profiling whole metagenome shotgun data. *Bioinformatics*, 33(10):1473–1478.