Around the resistome in 80 ways:

an empirical evaluation of antimicrobial resistance gene detection methods

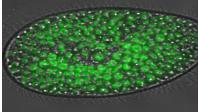
Finlay Maguire finlaymaguire@gmail.com

December 2, 2019

Faculty of Computer Science, Dalhousie University

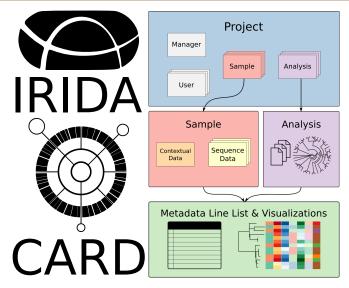
- 1. Background
- 2. Why do we care about AMR?
- 3. Targeted sequencing
- 4. Genomics
- 5. Metagenomics
- 6. Metagenomic-Assembled Genomes

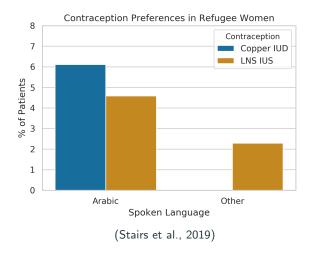
Background

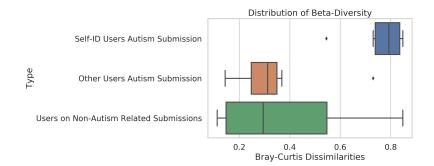

Evolution of Eukaryotic Endosymbioses

peu. Et par deux fois j'ay veu dans cette mefme eau un animal dix que ces autres qui avoit des pieds tout le long du corps, et effoit

Les 4 ou 5 pieds du c fans ceffe quand mefme en repos. Il courroit v autres, et fe tournoit et l'eau. Hartfoecker m'affe


trouvè de la mefme efpece in femine corrupto.



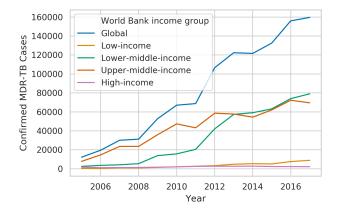

(Maguire, 2016)

Antimicrobial Resistance

(Matthews et al., 2018)

Congratulations, your application to the SSHRC Explore Grants competition has been awarded.

Project Title: NEETs, Incels, and Wizards: The Experiences of Socially Isolated Men


Why do we care about AMR?

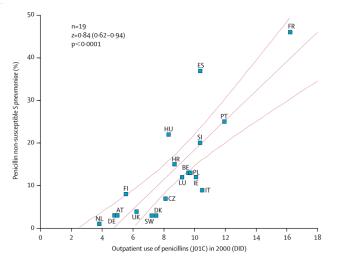
AMR is currently a problem

2015 EU/EEA: 33,110 deaths, Data from (Cassini et al., 2019).

AMR is growing

WHO Global Health Observatory Data Repository.

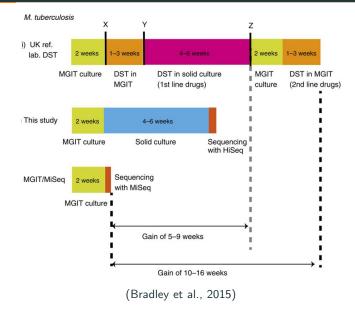
What can we do about it?


• Locally: information would help improve patient health.

- Locally: information would help improve patient health.
- Nationally: health policies and responses to emergencies.

- Locally: information would help improve patient health.
- Nationally: health policies and responses to emergencies.
- Globally: emerging threats and long-term trends.

- Locally: information would help improve patient health.
- Nationally: health policies and responses to emergencies.
- Globally: emerging threats and long-term trends.
- Scientifically: better understanding of underlying biology.


Improve diagnostics

(Goossens et al., 2005)

How do we do this?

Phenotypically?

- DNA is relatively tractable and stable
- Sequencing technology is mature
- Represents the substrate of evolution

E. coli gene regulatory networks are inconsistent with gene expression data **∂**

Simon J Larsen 🖾, Richard Röttger, Harald H H W Schmidt, Jan Baumbach

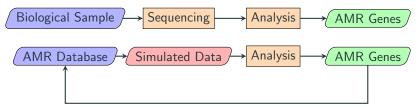
Nucleic Acids Research, Volume 47, Issue 1, 10 January 2019, Pages 85–92,

Random sequences rapidly evolve into de novo promoters

Avihu H. Yona 🖂, Eric J. Alm & Jeff Gore 🖂

Nature Communications 9, Article number: 1530 (2018) Cite this article

- 10% of random sequences can serve as active promoters
- 60% of random sequences can modulate expression with only one mutation

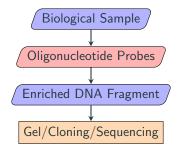

Which DNA sequencing method?

Additional factors:

- Does method provide other information?
- Cost/experimental considerations

Additional factors:

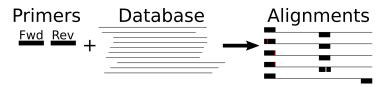
- Does method provide other information?
- Cost/experimental considerations



Additional factors:

- Does method provide other information?
- Cost/experimental considerations

Targeted sequencing


Targeted sequencing

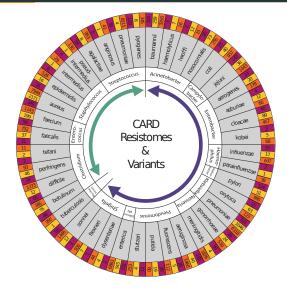
- Cheap/simple infrastructure
- Multiple sample types
- Low input requirements

Choosing and evaluating primers

Testing primers computationally

github.com/mwhall/VAware: Mike Hall

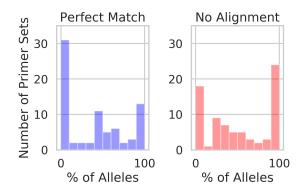
Needleman-Wunsch alignments:


- Perfect: no mismatches, insert < 1500
- Intermediate: (1-2 minor mismatches)
- Low: (2-4 minor; 0-1 major terminal, gaps)
- Missed: (> 4 minor; > 1 major)

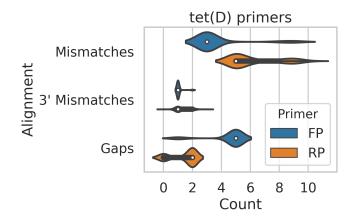
List of primers for detection of antimicrobial resistance genes

			Primer mane	Internal number	Sequence	Temperature ('U)	Reference
Betalactans	TEM	An	TEM front P1	Primer 757	5-GOOGAACCOUTATITG-J	55	Oleseu, L. H., Bioman, and F. M., Aarestupe, 2004. Prevalence of Deta-Jactanaeo among ampleilin-resistant Escherichia coti and Saturcerici notatiof firms food annum is in Demands. MarcobDrug Rosto. 19:334– 344 Moodes, A. and Guardabasi, L. Tarentisono of Deta Pharonis Carving IMCTANA However Commercial Escherichia coti an Pigs and Farm Workers. Antinicrobial Agents and Chemstherapy. 2009. 53:1706-1711.
			TEM-C-R op	Primer 686	5-ADC AAT OCT TAA TCA GIG AG-3		
	стх	M All	ctt.M UI	Primer 1354	5-ATOTOCAGYACCAGTAARGTKATOOC-3	60	Hasman, H., D. Mevins, K. Viidmun, I. Olesen and F. M. Aarestrup. 2006. Beta-lactanases among Extended spectrum Rota-lactanase resistant (ESRL). Submodela from positry, positry products and human patients in The Netherlands. J. Aminiacob. Chemother. 36:0115-121.
			CTX-M-U-Jaew	Primer 1580	5-TEOGTRAARTARGTSACCAGAAYSAGCOG-3'		Bendicken R. S., Mässlei M., Konscheber C., Rickert R. L., Doyne S. V., Kjelse C., Haeman H., Cornican M., Mevin D., Threfield J., Aegus P. J., Amstrup F. M. 2009. Emergence of Milliding Resistant Saturescia Control Infections in Europe and the United States in Children Adopted From Ethiopia. 2005-2007. Pediat: Infect. Doi: 3.20324418.
		CTX-MI group	sta-M-15 front P1	Primer 1537	5-0CATOGITAAAAAATCACTOCG-3		Moodky, A. and Guardabassi, L. Tansmission of IncN Plasmids Carrying blaCTX-M-1 between Commensat Escherichia coti in Pigs and Farm Workers. Antimicrobiat Agents and Chemotherapy, 2009, 53:1709-1711.

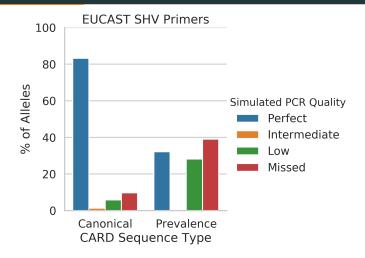
European Committee on Antimicrobial Susceptibility Testing: 78 PCR Primer Sets


Which AMR genes?

CARD-prevalence: 85 pathogens, 116,914 resistomes (chromosome, plasmid, and WGS assembly). Brian Alcock/McArthur Lab


How well do these primers work?

Surprisingly poorly


- Many aminoglycosides and tetracycline resistance genes totally missed
- Caveat: needs experimental validation

Lots of serious mismatches

No primer alignment in 27.58% of tetD alleles

Stagnation of primers

off-target hits (1 mismatch in RP) to LEN-3, LEN-4

Can we improve on this?

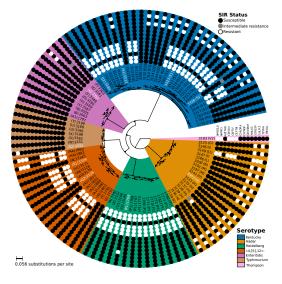
Antimicrobial Agents and Chemotherapy

Mechanisms of Resistance

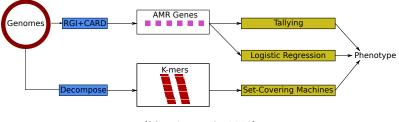
Capturing the Resistome: A targeted capture method to reveal antibiotic resistance determinants in metagenomes

Allison K. Guitor, Amogelang R. Raphenya, Jennifer Klunk, Melanie Kuch, Brian Alcock, Michael G. Surette, Andrew G. McArthur, Hendrik N. Poinar, Gerard D. Wright

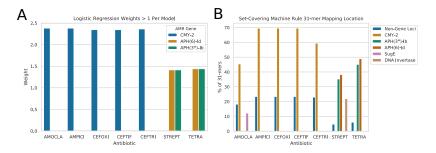
DOI: 10.1128/AAC.01324-19


(Guitor et al., 2019)

- a priori target decisions
- Need constantly updated
- No easy genomic context
- No easy source-genome attribution

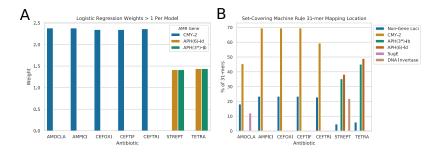

Why do we care about context?

Genomics

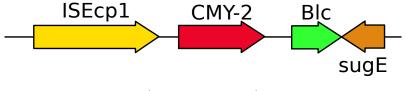

Case-study on strengths of genomics

Phenotype prediction modelling

Genomes allow gene-free models



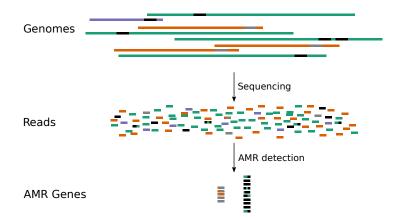
Appl Environ Microbiol. 2011 Jul;77(13):4486-93. doi: 10.1128/AEM.02788-10. Epub 2011 May 20.


Selection pressure required for long-term persistence of blaCMY-2-positive IncA/C plasmids.

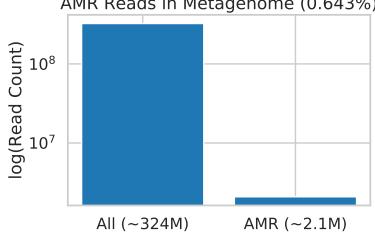
Subbiah M¹, Top EM, Shah DH, Call DR.

Generate co-selection hypotheses

Generate co-selection hypotheses

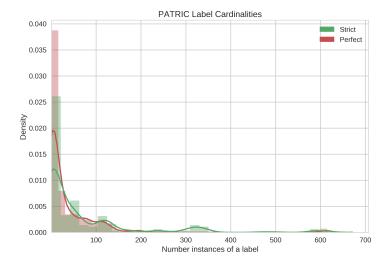


We need genomes to identify previously unknown factors, but:

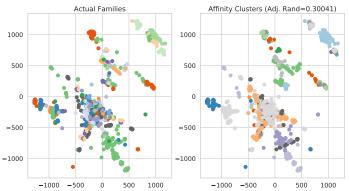

- Culturing is expensive, time-consuming, and difficult
- Single cell methods are noisy and analytically complex
- Only profile 'one' genome per sample

Metagenomics

Read-based AMR Metagenomics

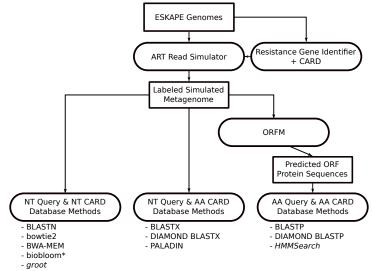

Difficulties of metagenomics

AMR Reads in Metagenome (0.643%)

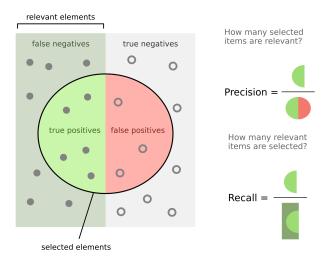

2184 CARD-prevalence genomes at 1-10X abundance

AMR genes have wildly different abundances

1236 AMR PATRIC genomes

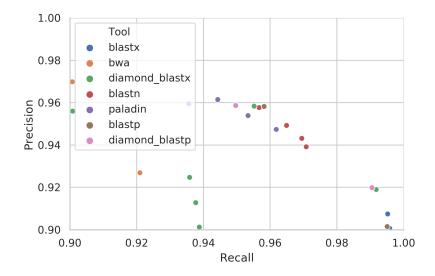

AMR sequence space overlaps

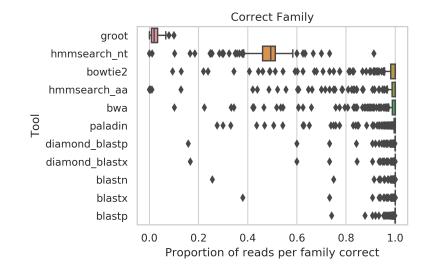
MDS of CARD Proteins BLASTP-%ID


Choosing an analysis approach

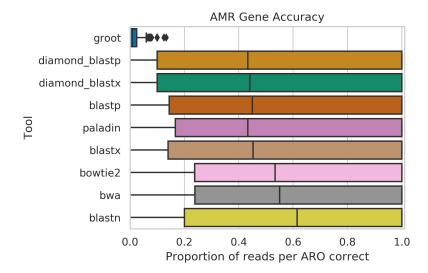
Simulate data and compare tools

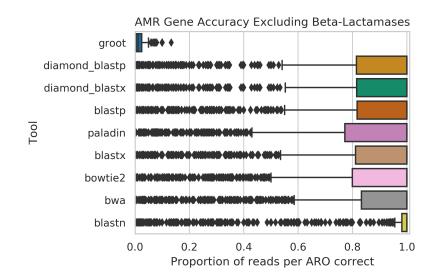
- HMMSearch

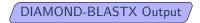

Terminology refresher

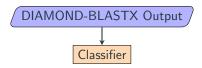

bit.ly/2pZzxJU

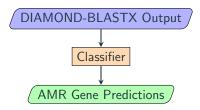
How well do different methods do?

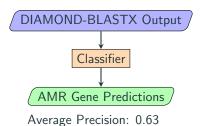

We can find reads from AMR genes

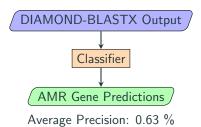

We can mostly identify which family

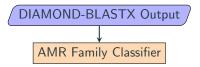

We cannot identify which specific gene

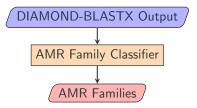


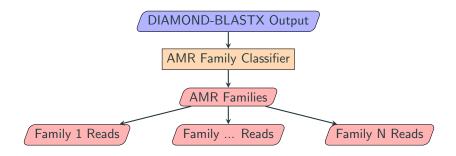

Highly similar families to blame

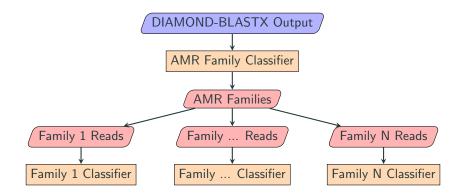


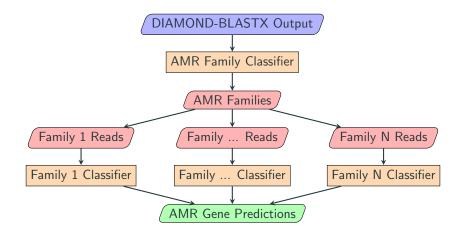

Is there any way to improve this?

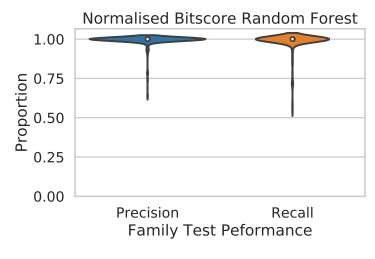


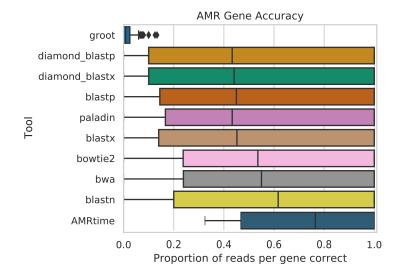







DIAMOND-BLASTX Output



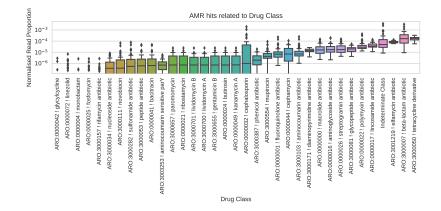


Slightly improved family performance



Mean Precision: 0.995, Mean Recall: 0.985

Greatly improved gene performance



Gains not evenly distributed

- Not enough signal in read so output compatible set
- Some fixed bugs

Metagenomic resistome profile

47 human gut metagenome profiles

- Known AMR genes
- Is one organism resistant to everything?
- Are many organisms each resistant to one thing?
- Have AMR genes been laterally transferred?

Can we get the best of metagenomics and genomics?

Metagenomic-Assembled Genomes

MAGs are popular

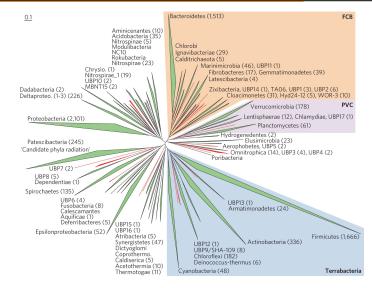


Figure from (Parks et al., 2017)

What about plasmids?

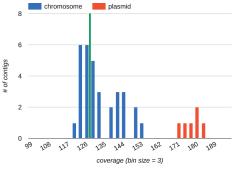
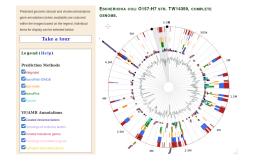
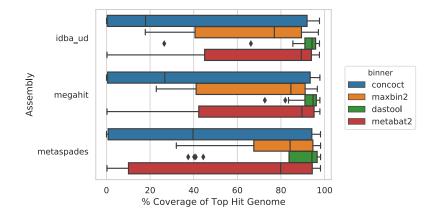



Figure from (Antipov et al., 2016)

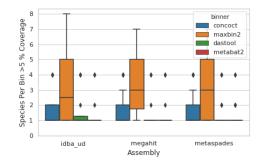
- Circular or linear extrachromosomal self-replicating DNA.
- Dissemination of AMR genes.
- Repetitive, variable copy number, different sequence composition.

Or genomic islands

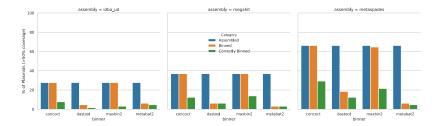

www.pathogenomics.sfu.ca/islandviewer

- Clusters of genes acquired through LGT
- Integrons, transposons, integrative and conjugative elements (ICEs) and prophages
- Variable copy number and composition (used by SIGI-HMM, IslandPath-DIMOB)

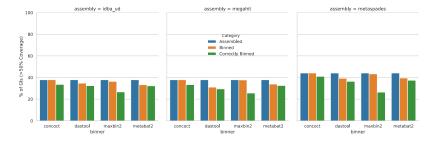
How well do MAGs recover these sequences?


- Simulate some metagenomes (lognormal abundance distribution) from difficult genomes
 - 10 genomes: lots of plasmids
 - 10 genomes: high % of genomic islands (compositional)
 - 10 genomes: low % of genomic islands
- Assembly using 3 alternative methods: IDBA_UD, MetaSPAdes, Megahit
- Bin contigs using 4 different tools: metabat2, maxbin2, concoct, dastool

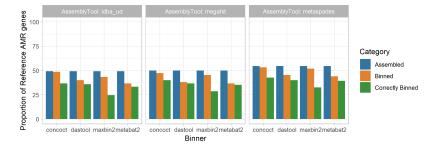
Chromosomes fairly well binned



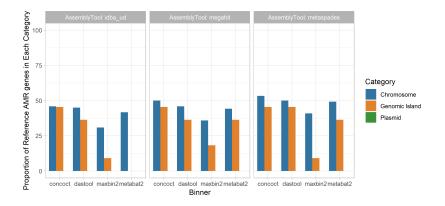
26-94.3% median chromosomal coverage (Pre-print draft github.com/fmaguire/mag_sim_paper)


Chromosomes fairly well binned

26-94.3% median chromosomal coverage (Pre-print draft github.com/fmaguire/mag_sim_paper)



1.5-29.2% plasmids binned


28-42% GIs binned

What about AMR genes?

24-43% AMR genes binned

Which AMR genes are lost?

- 30-53% chromosomal AMR genes (n=120)
- 0-45% genomic island AMR genes (n=11)
- 0% of plasmid AMR genes (n=20)

- Regain some context but with biased data loss
- Disproportionate loss of AMR genes
- Mobile Genetic Elements poorly recovered
- Cautionary tale: more processing = more data loss

Conclusions

Method	Strengths	Weaknesses
--------	-----------	------------

Method	Strengths	Weaknesses
Targeted	Cheap, easy analysis	a priori, stagnation

Method	Strengths	Weaknesses
Targeted	Cheap, easy analysis	a priori, stagnation
Genomics	Context, moderate analysis	Isolation, throughput

Method	Strengths	Weaknesses
Targeted	Cheap, easy analysis	a priori, stagnation
Genomics	Context, moderate analysis	Isolation, throughput
Metagenomics	Many genomes at once	Fragmented, no context, difficult analysis

Method	Strengths	Weaknesses
Targeted	Cheap, easy analysis	a priori, stagnation
Genomics	Context, moderate analysis	Isolation, throughput
Metagenomics	Many genomes at once	Fragmented, no context, difficult analysis
Metagenomic-Assembed Genomes	Context for many genomes	Lose key data, complex analysis

• Simulation fundamental to evaluating approaches

Method	Strengths	Weaknesses
Targeted	Cheap, easy analysis	a priori, stagnation
Genomics	Context, moderate analysis	Isolation, throughput
Metagenomics	Many genomes at once	Fragmented, no context, difficult analysis
Metagenomic-Assembed Genomes	Context for many genomes	Lose key data, complex analysis

- Simulation fundamental to evaluating approaches
- Characterisation necessary to mitigate weaknesses and promote strengths

Method	Strengths	Weaknesses
Targeted	Cheap, easy analysis	a priori, stagnation
Genomics	Context, moderate analysis	Isolation, throughput
Metagenomics	Many genomes at once	Fragmented, no context, difficult analysis
Metagenomic-Assembed Genomes	Context for many genomes	Lose key data, complex analysis

- Simulation fundamental to evaluating approaches
- Characterisation necessary to mitigate weaknesses and promote strengths
- Machine-Learning represents useful tools for this (e.g. AMRtime, gene-free AST prediction models)

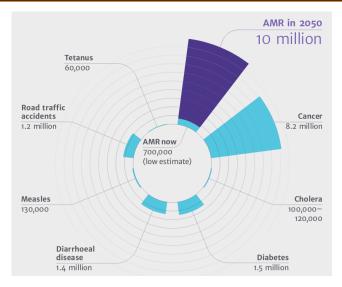
Acknowledgements

- McMaster University: Brian Alcock, Amos Raphenya, Kara Tsang, Andrew McArthur
- Simon Fraser University: Justin Jia, Kristen Gray, Venus Lau, Fiona Brinkman
- Dalhousie University: Mike Hall, Robert Beiko
- Funding: Donald Hill Family Fellowship; Genome Canada.

Questions?

References

- Antipov, D., Hartwick, N., Shen, M., Raiko, M., Lapidus, A., and Pevzner, P. (2016). plasmidspades: assembling plasmids from whole genome sequencing data. *bioRxiv*, page 048942.
- Bradley, P., Gordon, N. C., Walker, T. M., Dunn, L., Heys, S., Huang,
 B., Earle, S., Pankhurst, L. J., Anson, L., De Cesare, M., et al. (2015).
 Rapid antibiotic-resistance predictions from genome sequence data for staphylococcus aureus and mycobacterium tuberculosis. *Nature communications*, 6:10063.


- Cassini, A., Hogberg, L. D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G. S., Colomb-Cotinat, M., Kretzschmar, M. E., Devleesschauwer, B., Cecchini, M., et al. (2019). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the eu and the european economic area in 2015: a population-level modelling analysis. *The Lancet Infectious Diseases*, 19(1):56–66.
- de Kraker, M. E., Stewardson, A. J., and Harbarth, S. (2016). Will 10 million people die a year due to antimicrobial resistance by 2050? *PLoS medicine*, 13(11):e1002184.
- Goossens, H., Ferech, M., Vander Stichele, R., Elseviers, M., Group, E. P., et al. (2005). Outpatient antibiotic use in europe and association with resistance: a cross-national database study. *The Lancet*, 365(9459):579–587.

- Guitor, A. K., Raphenya, A. R., Klunk, J., Kuch, M., Alcock, B., Surette, M. G., McArthur, A. G., Poinar, H. N., and Wright, G. D. (2019).
 Capturing the resistome: A targeted capture method to reveal antibiotic resistance determinants in metagenomes. *Antimicrobial agents and chemotherapy*, pages AAC–01324.
- Maguire, F. (2016). A multi-omic analysis of the photosynthetic endosymbioses of paramecium bursaria. *PhD Thesis*.
- Maguire, F., Rehman, M. A., Carrillo, C., Diarra, M. S., and Beiko, R. G. (2019). Identification of primary antimicrobial resistance drivers in agricultural nontyphoidal salmonella enterica serovars by using machine learning. *MSystems*, 4(4):e00211–19.
- Matthews, T. C., Bristow, F. R., Griffiths, E. J., Petkau, A., Adam, J., Dooley, D., Kruczkiewicz, P., Curatcha, J., Cabral, J., Fornika, D., et al. (2018). The integrated rapid infectious disease analysis (irida) platform. *bioRxiv*, page 381830.

- on Antimicrobial Resistance, R. (2016). *Tackling drug-resistant infections globally: final report and recommendations*. Review on antimicrobial resistance.
- Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P.-A., Woodcroft,
 B. J., Evans, P. N., Hugenholtz, P., and Tyson, G. W. (2017).
 Recovery of nearly 8,000 metagenome-assembled genomes
 substantially expands the tree of life. *Nature microbiology*, 2(11):1533.
- Stairs, J., Bal, N., Maguire, F., and Scott, H. (2019). A resident-led clinic that promotes the health of refugee women through advocacy and partnership. *Canadian Medical Education Journal*.

Backup

10 million deaths?

(on Antimicrobial Resistance, 2016), (de Kraker et al., 2016)

PLoS Med. 2016 Nov; 13(11): e1002184. Published online 2016 Nov 29. doi: 10.1371/journal.pmed.1002184 PMCID: PMC5127510 PMID: 27898664

Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050?

Marlieke E. A. de Kraker, 1 .* Andrew J. Stewardson, 2 and Stephan Harbarth 1

(on Antimicrobial Resistance, 2016), (de Kraker et al., 2016)

For 3rd-generation cephalosporin resistant *E. coli, K. pneumoniae*, and MRSA:

- Estimate global BSIs (multiply average incidence in tertiary European hospitals by global population).
- Estimate AMR (proportion of resistant blood-cultures per country)
- Extrapolate to other infections sites (via relative incidence to BSI in 2 studies n=16 BSIs)
- Estimate attributable mortality rates from adjusted odds-ratios in an unspecified manner.
- Assume no change in mortality, 40% increase in resistance, and doubled infection rates by 2050.