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Background



Evolution of Eukaryotic Endosymbioses

(Maguire, 2016)
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Antimicrobial Resistance

IRIDA

CARD
(Matthews et al., 2018)
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Epidemiology

(Stairs et al., 2019)
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Sociology?
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Sociology?
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Why do we care about AMR?



AMR is currently a problem

2015 EU/EEA: 33,110 deaths, Data from (Cassini et al., 2019).
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AMR is growing

WHO Global Health Observatory Data Repository.
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What can we do about it?



Improve surveillance

• Locally: information would help improve patient health.

• Nationally: health policies and responses to emergencies.

• Globally: emerging threats and long–term trends.

• Scientifically: better understanding of underlying biology.
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Improve diagnostics

(Goossens et al., 2005)
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How do we do this?



Phenotypically?

(Bradley et al., 2015)
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DNA sequencing

• DNA is relatively tractable and stable

• Sequencing technology is mature

• Represents the substrate of evolution
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Downside of DNA: capacity not expression

• 10% of random sequences can serve as active promoters

• 60% of random sequences can modulate expression with only one

mutation
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Which DNA sequencing method?



Choosing a method

Biological Sample Sequencing Analysis AMR Genes

AMR Database Simulated Data Analysis AMR Genes

Additional factors:

• Does method provide other information?

• Cost/experimental considerations
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Targeted sequencing



Targeted sequencing

Biological Sample

Oligonucleotide Probes

Enriched DNA Fragment

Gel/Cloning/Sequencing

• Cheap/simple infrastructure

• Multiple sample types

• Low input requirements
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Choosing and evaluating primers



Testing primers computationally

github.com/mwhall/VAware: Mike Hall

Needleman-Wunsch alignments:

• Perfect: no mismatches, insert < 1500

• Intermediate: (1-2 minor mismatches)

• Low: (2-4 minor; 0-1 major - terminal, gaps)

• Missed: (> 4 minor; > 1 major)
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Which primers?

European Committee on Antimicrobial Susceptibility Testing: 78 PCR Primer

Sets
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Which AMR genes?
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How well do these primers work?



Surprisingly poorly

• Many aminoglycosides and tetracycline resistance genes totally

missed

• Caveat: needs experimental validation
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Lots of serious mismatches

No primer alignment in 27.58% of tetD alleles
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Stagnation of primers

off-target hits (1 mismatch in RP) to LEN-3, LEN-4
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Can we improve on this?



Designing probes with up-to-date AMR allele diversity

(Guitor et al., 2019)
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Downsides of targeted-approaches

• a priori target decisions

• Need constantly updated

• No easy genomic context

• No easy source-genome attribution
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Why do we care about context?



Genomics



Case-study on strengths of genomics
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Phenotype prediction modelling

RGI+CARD

K-mers

Tallying

Logistic Regression

Set-Covering Machines

Genomes
AMR Genes

Phenotype

Decompose

(Maguire et al., 2019)
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Genomes allow gene-free models

A B

(Maguire et al., 2019)
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Generate co-selection hypotheses

(Maguire et al., 2019)
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Generate co-selection hypotheses

A B

(Maguire et al., 2019)
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Generate co-selection hypotheses

ISEcp1 CMY-2 Blc

sugE
(Maguire et al., 2019)
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Downsides of genomics

We need genomes to identify previously unknown factors, but:

• Culturing is expensive, time-consuming, and difficult

• Single cell methods are noisy and analytically complex

• Only profile ‘one’ genome per sample

27



Metagenomics



Read-based AMR Metagenomics

Genomes

Reads

AMR Genes

Sequencing

AMR detection
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Difficulties of metagenomics



AMR genes are rare genomically

All (~324M) AMR (~2.1M)

107

108

lo
g(

Re
ad

 C
ou

nt
)

AMR Reads in Metagenome (0.643%)

2184 CARD-prevalence genomes at 1-10X abundance
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AMR genes have wildly different abundances

1236 AMR PATRIC genomes 30



AMR sequence space overlaps

1000 500 0 500 1000

1000

500

0

500

1000

Actual Families

1000 500 0 500 1000

1000

500

0

500

1000

Affinity Clusters (Adj. Rand=0.30041)
MDS of CARD Proteins BLASTP-%ID
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Choosing an analysis approach



Simulate data and compare tools

NT Query & NT CARD 
Database Methods

ESKAPE Genomes

Resistance Gene Identifier 
+ CARD

ART Read Simulator

Labeled Simulated 
Metagenome

ORFM

Predicted ORF
Protein Sequences

NT Query & AA CARD
Database Methods

AA Query & AA CARD 
Database Methods

- BLASTN
- bowtie2
- BWA-MEM
- biobloom*
- groot
- HMMSearch

- BLASTX
- DIAMOND BLASTX
- PALADIN

- BLASTP
- DIAMOND BLASTP
- HMMSearch
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Terminology refresher

bit.ly/2pZzxJU

33
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How well do different methods

do?



We can find reads from AMR genes
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We can mostly identify which family
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We cannot identify which specific gene

36



Highly similar families to blame
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Is there any way to improve this?



Statistical/Machine-Learning Correction

DIAMOND-BLASTX Output

Classifier

AMR Gene Predictions

Average Precision: 0.63 %
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Revised classifier structure: exploiting the ARO

DIAMOND-BLASTX Output

AMR Family Classifier

AMR Families

Family 1 Reads

Family 1 Classifier

Family ... Reads

Family ... Classifier

Family N Reads

Family N Classifier

AMR Gene Predictions
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Slightly improved family performance

Precision Recall
Family Test Peformance

0.00
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0.75

1.00
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n

Normalised Bitscore Random Forest

Mean Precision: 0.995, Mean Recall: 0.985
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Greatly improved gene performance
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Gains not evenly distributed
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Ordered AMR Family Index
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• Not enough signal in read so output compatible set

• Some fixed bugs
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Metagenomic resistome profile
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Great, but...

• Known AMR genes

• Is one organism resistant to everything?

• Are many organisms each resistant to one thing?

• Have AMR genes been laterally transferred?

44



Can we get the best of

metagenomics and genomics?



Metagenomic-Assembled

Genomes



MAG binning

Genomes

Reads

Contigs

Metagenome-
Assembled Genomes

Sequencing

Assembly

Binning
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MAGs are popular

Figure from (Parks et al., 2017)
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What about plasmids?

Figure from (Antipov et al., 2016)

• Circular or linear extrachromosomal self-replicating DNA.

• Dissemination of AMR genes.

• Repetitive, variable copy number, different sequence composition.

47



Or genomic islands

www.pathogenomics.sfu.ca/islandviewer

• Clusters of genes acquired through LGT

• Integrons, transposons, integrative and conjugative elements (ICEs)

and prophages

• Variable copy number and composition (used by SIGI-HMM,

IslandPath-DIMOB)

48
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How well do MAGs recover these

sequences?



Time to start simulating again

• Simulate some metagenomes (lognormal abundance distribution)

from difficult genomes

• 10 genomes: lots of plasmids

• 10 genomes: high % of genomic islands (compositional)

• 10 genomes: low % of genomic islands

• Assembly using 3 alternative methods: IDBA UD, MetaSPAdes,

Megahit

• Bin contigs using 4 different tools: metabat2, maxbin2, concoct,

dastool

49



Chromosomes fairly well binned

26-94.3% median chromosomal coverage (Pre-print draft

github.com/fmaguire/mag_sim_paper)

50
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Plasmids are not

1.5-29.2% plasmids binned

51



Genomic islands are better but bad

28-42% GIs binned

52



What about AMR genes?

24-43% AMR genes binned

53



Which AMR genes are lost?

• 30-53% chromosomal AMR genes (n=120)

• 0-45% genomic island AMR genes (n=11)

• 0% of plasmid AMR genes (n=20)
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Be cautious with MAGs

• Regain some context but with biased data loss

• Disproportionate loss of AMR genes

• Mobile Genetic Elements poorly recovered

• Cautionary tale: more processing = more data loss
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Conclusions



Conclusions

Method Strengths Weaknesses

Targeted Cheap, easy analysis a priori, stagnation

Genomics Context, moderate analysis Isolation, throughput

Metagenomics Many genomes at once Fragmented, no context, difficult analysis

Metagenomic-Assembed Genomes Context for many genomes Lose key data, complex analysis

• Simulation fundamental to evaluating approaches

• Characterisation necessary to mitigate weaknesses and promote

strengths

• Machine-Learning represents useful tools for this (e.g. AMRtime,

gene-free AST prediction models)
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10 million deaths?

(on Antimicrobial Resistance, 2016), (de Kraker et al., 2016)
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(on Antimicrobial Resistance, 2016), (de Kraker et al., 2016)
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Where does 10 million come from?

For 3rd-generation cephalosporin resistant E. coli, K. pneumoniae, and

MRSA:

• Estimate global BSIs (multiply average incidence in tertiary

European hospitals by global population).

• Estimate AMR (proportion of resistant blood-cultures per country)

• Extrapolate to other infections sites (via relative incidence to BSI in

2 studies n=16 BSIs)

• Estimate attributable mortality rates from adjusted odds-ratios in an

unspecified manner.

• Assume no change in mortality, 40% increase in resistance, and

doubled infection rates by 2050.
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