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Tree Thinking Refresher



Reading a tree

Amocha  Red Alga Green Alga Moss Pine

which of the following is an accurate statement of relationships?

1. A green alga is more closely related to a red alga than to a moss
2. A green alga is more closely related to a moss than to a red alga
3. Agreen alga is equally related to a red alga and a moss

4. A green alga is related to a red alga, but is not related to a moss
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which of the following is an accurate statement of relationships?

1. A green alga is more closely related to a red alga than to a moss
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Comparing Topologies

A B C
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Which of the four trees depicts a different pattern of relationships to
the others?
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Comparing Topologies

G B D EC A F A B C

G F A B C E V
Which of the four trees depicts a different pattern of relationships to
the others?

¢: Cis more closely related to E and D than to B in other trees.



Sequence Model Selection



Phylogenies are hypotheses

Cid
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Hypothesis testing

<
Unequal 2 substinaian
‘base frequenies / yism

KZP (=K80)

F81
Unequal
2 substinution bf anaion
clases oo
HKYEE Tref

( Kan

um-qw 4 substinution
3 substinition classes
classes

TIMef

Unequal
K8l TeN bf 5 substitution
classes
4 substization: \ /
classes TVMef
TIM Unequal
_— bf. 6 substindion
g | (R
classes
SYM
Unequal
po— o
classes

- Does another model of sequence evolution fit the data better?
- How well supported are individual branches in a tree?
- Does another tree explain the data better?



How do we select a sequence model?
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- Likelihood ratio test (LRT ¢ i.e. p(data] model)
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- Likelihood ratio test (LRT ¢ i.e. p(data] model)

-5 =2(In(Ly) - In(Lo))

- Limitations: nested models (i.e. hLRT), order matters, no
regularisation



Information Criterion
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Information Criterion

- Akaike Information Criterion (AIC), penalising number of
parameters:

- AIC = —2In(L) + 2K

- However, this penalises all high K models even if sample size is
large too.

- Corrected Akaike Information Criterion (AlCc)

- AlCc = AIC + 231

- Alternatively, there is the Bayesian Information Criterion (BIC):
- BIC = =2[n(L) + Kln(n)

- Decision Theory (DT) risk minimisation approach.
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- What if everything fits poorly?

- Information criterion test relative goodness of fit instead of
absolute

- Parametric Bootstrapping/Posterior Predictive Simulation

- If the model is reasonable then data simulated under should
resemble the empirical data

1



Branch Support Testing




Bootstrapping in General

The bootstrap

(unknown) true value of
estimate of 0

Aa i

(unknown) true distribution empirical distribution of sample

—
Bootstrap replicates

Distribution of estimates
of parameters

Slide from Joe Felsenstein



Bootstrapping Phylogenies

The bootstrap for phylogenies

sites

Original
Data

sample
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sample same number
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Bootstrap
sample
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sample same number
of sites, with replacement

Slide from Joe Felsenstein

(and so on)



Bootstrapping Phylogenies

Bootstrapped Trees

alignments

Alignment Resample the alignment
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Bootstrapping Phylogenies

The majority-rule consensus tree
E B E B
C F A F
E B C B E B
A>—<c E- Y 0 A>—<D
F D a F C F

How many times each partition of species is found:

Trees:

AEIBCDF 4

ACEIBDF 3 E B

ACEFIBD 1 0.8

ACIBDEF 1

AEFIBCD 1 A 06 -D
0.6

ADEFIBC 2 . F

ABCEIDF 3 C

Slide from Joe Felsenstein 15



Combining the results
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What is the bootstrap doing?

- Randomly reweighing the sites in an alighnments
+ Probability of a site being excluded 1— 1n
- Asymptotically approximately 0.36

- Goal to simulate an infinite population (number of alignment
columns)
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- Typically underestimates the true probabilities
- i.e biased but conservative

- Computationally demanding

- Assumes independence of sites

- Relies on good input data

- Only answers to what extent does input data support a given
part of the tree



Parametric Bootstraps

- Simulate data sets of this size assuming the estimate of the tree
is the truth

- Key for many more sophisticated tests.

- Can be used to generate p-values, but non-trivial

19
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Alternative Approaches

- Resampling estimated log-likelihoods (RELL)

- Instead of re-doing the full ML inference just re-sample the site
[n(L) values and sum

- Rapid Bootstraps (RBS)
- Ultrafast Bootstraps (UFBoot)

20



Likelihood Tests

(A\) Best, 4
- Comparing the 3 nearest NNIs
to a given branch:
b/gi’:ﬂ,[&

Worst, l&

(9]
j (D) Nun, 4 21
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Likelihood Tests

b/gj’:s:,

Worst,

- Comparing the 3 nearest NNIs
to a given branch:

- Parametric aLRT: x? of 6 for
branch vs. closest NNIs

- Non-parametric SH-aLRT

based on RELL

- aBayes:
PUITOP(T.)
PUTe 1 0) = sz=gntitmyeery Wit
flat prior

P(To) = P(T1) = P(T>)

21



Comparing Trees




How to compare competing hypotheses?

orang



https://github.com/mtholder/TreeTopoTestingTalks 
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Qualitative Comparison
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Qualitative Comparison
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- 40 out of 60 p = 0.0124
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Qualitative Comparison
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By how much?| 5.2 | 3.1 [| 0.9 || 6.6 [|0.3 0.2

- 4 sites favour the red tree, 2 favour the blue
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- 4outof6 p=0.6875

- 40 out of 60 p = 0.0124

- 400 out of 600 p = 2.3 %1071
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Quantiative Comparison
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Quantiative Comparison

I A c
112 3([4]|5]|6 > <
A cllallt]lc|lc]lt B D
B cllcllgllgflgllt
c |gllc|lg||lgllal|a A 8
D gllallallc|lgllt >_<
D c
Favours? D I:] I:‘ l:‘ D I:I
By how much?| 5.2 | 3.1 [| 0.9 || 6.6 [|0.3 0.2

“pu=(-524+31+09+6.6+03-02)/6=0.916
< 02 =15.22
= L xV/N = 0.148

- therefore: p = 0.888 under 5d.f.
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More robust approaches
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More robust approaches

- Null: if no sampling error (infinite data) T, and T, would explain
the data equally well.

COX | Ty, To) = 2[InL(X | T)) = InL(X | T2)]
- Expectation under null E[6(X | T4, T2)] =0
- Why can't we just use x? to get a critical value for 6?

- Tree space is difficult.

27



Estimating variance of the null

- Many avenues:

- Non-parametric bootstrapping
- Parametric bootstrapping

- Related approaches.

28



Alternative tests

- Shimodaira-Hasegawa Test
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Alternative tests

- Shimodaira-Hasegawa Test

- Compares candidate tree sets

- Ho = all topologies equally good

- Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.

- Approximately Unbiased Test

- Achieves weighted by varying bootstrap size for each tree.

- Better for larger comparisons, can have issues with P-space
curvature.

- Swofford-Olsen-Waddell-Hillis same idea but uses parametric
bootstraps instead.

- Sensitive to model misspecification.

29



From A Single Gene to Many
Genes




Core vs Pan-Genome

Pangenome

J Accessory genome

Core genome

- How do we go from a bunch of individual genes to a species

phylogeny?

30



Venn/Euler plots should be avoided
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Why can't just use a single gene tree?

Gene paralogy:

C
A andY are paralogues, z 3
A and B are orthologues

32



Paralogy
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Gene paralogy:

C
A andY are paralogues, z 3
A and B are orthologues
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Hidden Paralogy

Gene paralogy:

Unidentified paralogy 7 3
leads to erroneous

inference of ((1,2),3)

35



Incomplete Lineage Sorting
* 1

"2

Not gene paralogy:
Incomplete lineage
sorting leads to

erroneous inference of ((1,2),3)

3
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Lateral/Horizontal Gene Transfer

Not gene paralogy:

Introgression or lateral C 3
gene transfer leads to

erroneous inference of ((1,2),3)
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Supermatrix and SuperTrees
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TRENDS in Ecalogy & Evolufion
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Supermatrix Evolution Models

GCA_000008265.1_0190
GCA 0000211851 0071 MG
GCA 0000267051 0189 RCHS
6CA_000168635.2 0199 RICHS
GCA_000168815.1 0193 MIcHS
GCA 000106035.1 0191 MG




Gene Partitions

GCA_B00088285.1 8198
GCA_000821185.1 0071
GCA_000026705.1 0189
GCA_000168635.2 0190
GCA_00D168815.1 0193
GCA 000196835.1 0191
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b~

0 2 4 6 8 10 12 14 16 18 20

GCA_000008285.1_0190
GCA_000021185.10071
GCA B00026785.1 0189
GCA 000168635.2 0196
GCA_B00168815.1 0193
GCA 000196035.1 0191
Gamma Category:
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Mixture Models

GCA_000008285.1_0190
GCA_000021185.1_0071
GCA_BOOD26705.1_08189
GCA_000168635,2_0190
GCA_BO0168815.1_A193
GCA 000196035.1 8191
Mixture Partition:

§
d
d
X
q
q

42



- Can be very computationally demanding
- Variable evolutionary rates/models combined (one-size fits all)
- CAT model does offer a solution but can overfit.

- More robust to random error when phylogenetic signal is
consistent.
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(true) (true) (simulated) (inferred) (inferred)
species tree  gene trees alignments gene trees species tree

- Allows reconciliation of partial overlaps (i.e. not just core
genome)

- Faster/more tractable

- Observed to have lower accuracy generally but more robust to
incongruent signal (i.e. frequent HGT).
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Coalescent Theory

a) Geneaology of a b) Geneaology of a sample  c) Genealogy of the
population of genes of the population  sample of genes

' MRCA

T

Time

\
" Coalescent

event

Ty

Time
between
coalescent
‘events

Population N=10 Samples nN=3
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Genomic Epidemiology
Phylogenetics




Identifying HGT with phylogenies

FIGURE 27.30. Stages in lateral gene transfer (LGT). The evolution of four species and one exam-
ple of LGT are shown. Some key steps in LGT are labeled: (a) Divergence of genomes of differ-
ent lineages; (b) movement of DNA from one lineage to another; (c) maintenance and replication
of the foreign DNA; (d) possible positive selection for the foreign DNA; (e) spread into the new
species’ population; (f) amelioration. (Modified from Penny D. and Poole A. Curr. Opin. Genet.
Dev. 9: 672-677, © 1999 Elsevier.)

Evolution © 2008 Cold Spring Harbor Laboratory Press
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Schematic HGT Tree

- (A) Need strong branch support for recipient branching with
donor lineages

- (B) Need strong support for recipient branching within donor
lineages
47



Different Types result in different topologies

Organismal tree Gene tree Organismal tree Gene tree
3 d
Duplicative Duplicative
transfer transfer with =
differential
loss
b
Recent e
homalagous
replacement Caiarial
transfer
<
f
Ancient
homologous

Transfer of
new gene

replacement

Nature Reviews | Genetics
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Real HGT

Flavobactenia bacterium
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Real HGT
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West African Ebola Epidemic
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Haitian Cholera Outbreak: Identifying the origin

MRCA

(Years before 2010)
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Haitian Cholera Outbreak: Identifying the origin
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Finding zoonoses

human HIV-1/M
human HIV-1/M
chimpanzee SIV
chimpanzee SIV
human HIV-1/N
human HIV-1/N
chimpanzee SIV
chimpanzee SIV
chimpanzee SIV
chimpanzee SIV
chimpanzee SIV

Echmpmzee SIV
b chimpanzee SIV
human HIV-1/0
human HIV-1/0
chimpanzee SIV
chimpanzee SIV

red-capped
mangabey SIV

vervet monkey SIV
tantalus monkey SIV
sooby mangabey SIV
human HIV-2/A
human HIV-2/B
sooty mangabey SIV
Sykes's monkey SIV
greater spot-nosed
mankey SIV

De Brazzas monkey
SV

# = jump from simian to human
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Conclusion




- Phylogenies are hypothesis and their inference includes
assumptions that need testing.
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- Phylogenies are hypothesis and their inference includes
assumptions that need testing.

- Bootstrapping is a slow, biased but conservative way to estimate
the support for a given branch in your tree.

- Comparing trees directly is non-trivial due to tree-space.

- Supermatrix and supertree approaches allow reconciliation of
data from multiple genes.

- Incongruence between the species tree and the gene tree might
be evidence for HGT.

- Phylogenies can be used to trace outbreak origins and
parameters.
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Questions?
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