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Tree Thinking Refresher



Reading a tree

which of the following is an accurate statement of relationships?

1. A green alga is more closely related to a red alga than to a moss
2. A green alga is more closely related to a moss than to a red alga
3. A green alga is equally related to a red alga and a moss
4. A green alga is related to a red alga, but is not related to a moss
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Comparing Topologies

Which of the four trees depicts a different pattern of relationships to
the others?
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Comparing Topologies

Which of the four trees depicts a different pattern of relationships to
the others?

c: C is more closely related to E and D than to B in other trees.
6



Sequence Model Selection



Phylogenies are hypotheses

Cid

Tetrahymena thermophila [XP_001012854.1]

Tetrahymena thermophila [XP_001012858.1]

Paramecium bursaria SW1 [comp3906_seq0_m.68533]

Paramecium bursaria SW1 [comp3906_seq0_m.68531]

Paramecium bursaria Yad1g [TR17851_c0_g1_i8_m.235761]

Paramecium bursaria Yad1g [TR432_c1_g1_i2_m.4057]

80.7%/0.93

Paramecium biaurelia [PBIGNP33303]

Paramecium tetaurelia Cid3 [GSPATP00025353001]

Paramecium sexaurelia [PSEXPNG26288]

89.8%/0.94

Paramecium multimicronucleatum [PMMNP07604]

99.8%/1.00

Paramecium caudatum [PCAUDP10462]

91%/0.93

Paramecium tetaurelia Cid1 (Marker, 2014) [PTETP9100013001]

Paramecium biaurelia [PBIGNP26212]

Paramecium primaurelia [PPRIMP23072]

5%/0.51

Paramecium sexaurelia [PSEXPNG26738]

42%/0.71

Paramecium multimicronucleatum [PMMNP02964] 

98.9%/0.99

Paramecium caudatum [PCAUDP15935]

55.4%/0.63

99.7%/1.00

59.5%/0.67

100%/1.00

97.9%/1.00

Paramecium caudatum [PSEXPNG26858]

Paramecium multimicronucleatum [PMMNP03007]

Paramecium sexaurelia [PSEXPNG26858]

Paramecium primaurelia [PPRIMP27560]

Paramecium biaurelia [PBIGNP11073]

Paramecium tetaurelia Cid2 (Marker, 2014) [PTETP13400003001]
84.1%/0.91

83%/0.88

95.3%/0.96

83.9%/0.88

59.1%/0.54

99.7%/1.00

86.7%/0.69

100%/1.00

0.2

Cid2

Cid1

Cid3

Cid1-3
Ancestor?

7



Hypothesis testing

• Does another model of sequence evolution fit the data better?
• How well supported are individual branches in a tree?
• Does another tree explain the data better?

8



How do we select a sequence model?

• Likelihood ratio test (LRT δ i.e. p(data| model)

• δ = 2(ln(L1)− ln(L0))
• Limitations: nested models (i.e. hLRT), order matters, no
regularisation
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Information Criterion

• Akaike Information Criterion (AIC), penalising number of
parameters:

• AIC = −2ln(L) + 2K
• However, this penalises all high K models even if sample size is
large too.

• Corrected Akaike Information Criterion (AICc)
• AICc = AIC+ 2K(K+1)

n−K−1

• Alternatively, there is the Bayesian Information Criterion (BIC):
• BIC = −2ln(L) + Kln(n)
• Decision Theory (DT) risk minimisation approach.
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Limitations

• What if everything fits poorly?

• Information criterion test relative goodness of fit instead of
absolute

• Parametric Bootstrapping/Posterior Predictive Simulation
• If the model is reasonable then data simulated under should
resemble the empirical data

11



Limitations

• What if everything fits poorly?
• Information criterion test relative goodness of fit instead of
absolute

• Parametric Bootstrapping/Posterior Predictive Simulation
• If the model is reasonable then data simulated under should
resemble the empirical data

11



Limitations

• What if everything fits poorly?
• Information criterion test relative goodness of fit instead of
absolute

• Parametric Bootstrapping/Posterior Predictive Simulation

• If the model is reasonable then data simulated under should
resemble the empirical data

11



Limitations

• What if everything fits poorly?
• Information criterion test relative goodness of fit instead of
absolute

• Parametric Bootstrapping/Posterior Predictive Simulation
• If the model is reasonable then data simulated under should
resemble the empirical data

11



Branch Support Testing



Bootstrapping in General

The bootstrap

(unknown) true value of  

(unknown) true distribution empirical distribution of sample

estimate of  

Distribution of estimates
 of parameters

Bootstrap replicates

Slide from Joe Felsenstein 12



Bootstrapping Phylogenies

The bootstrap for phylogenies

Original
Data

sites

Bootstrap
sample
#1

Bootstrap
sample

#2

sample same number
of sites, with replacement

sample same number
of sites, with replacement

(and so on)

T
^

T(1)

T(2)

Slide from Joe Felsenstein
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Bootstrapping Phylogenies
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Bootstrapping Phylogenies

The majority-rule consensus tr ee

C
A

Trees:

How many times each partition of species is found:

AE | BCDF 4
ACE | BDF 3
ACEF | BD 1
AC | BDEF 1
AEF | BCD 1
ADEF | BC 2
ABCE | DF 3

B
D
F

E
C
A

B
D
F

E

C
A

B
D
F

E

C
A

B

D
F

E

C

A

B

DF

E
A C

B
D
F

E
0.6

0.6
0.8

Slide from Joe Felsenstein 15



Combining the results

16



What is the bootstrap doing?

• Randomly reweighing the sites in an alignments

• Probability of a site being excluded 1− 1
nn

• Asymptotically approximately 0.36
• Goal to simulate an infinite population (number of alignment
columns)
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Limitations

• Typically underestimates the true probabilities

• i.e biased but conservative
• Computationally demanding
• Assumes independence of sites
• Relies on good input data
• Only answers to what extent does input data support a given
part of the tree
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Parametric Bootstraps

• Simulate data sets of this size assuming the estimate of the tree
is the truth

• Key for many more sophisticated tests.
• Can be used to generate p-values, but non-trivial

19



Alternative Approaches

• Resampling estimated log-likelihoods (RELL)

• Instead of re-doing the full ML inference just re-sample the site
ln(L) values and sum

• Rapid Bootstraps (RBS)
• Ultrafast Bootstraps (UFBoot)

20
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Likelihood Tests

• Comparing the 3 nearest NNIs
to a given branch:

• Parametric aLRT: χ2 of δ for
branch vs. closest NNIs

• Non-parametric SH-aLRT
based on RELL

• aBayes:
• P(Tc | X) = P(X|Tc)P(Tc)∑2

i=0P(X||Ti)P(Ti)
with

flat prior
P(T0) = P(T1) = P(T2)

21
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Comparing Trees



How to compare competing hypotheses?

https://github.com/mtholder/TreeTopoTestingTalks

22
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How to compare competing hypotheses?

https://github.com/mtholder/TreeTopoTestingTalks
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Simplistic Comparison
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Qualitative Comparison

• 4 sites favour the red tree, 2 favour the blue

•
(n
k
)
pk(1− p)n−k

• 4 out of 6 p = 0.6875
• 40 out of 60 p = 0.0124
• 400 out of 600 p = 2.3 ∗ 10−16
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Quantiative Comparison

• µ = (−5.2+ 3.1+ 0.9+ 6.6+ 0.3− 0.2)/6 = 0.916

• σ2 = 15.22
• t = µ

σ2 ∗
√
N = 0.148

• therefore: p = 0.888 under 5d.f.
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More robust approaches

• Null: if no sampling error (infinite data) T1 and T2 would explain
the data equally well.

• δ(X | T1, T2) = 2 [ln L(X | T1)− ln L(X | T2)]
• Expectation under null E [δ(X | T1, T2)] = 0
• Why can’t we just use χ2 to get a critical value for δ?
• Tree space is difficult.
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Estimating variance of the null

• Many avenues:
• Non-parametric bootstrapping
• Parametric bootstrapping
• Related approaches.

28



Alternative tests

• Shimodaira-Hasegawa Test

• Compares candidate tree sets
• H0 = all topologies equally good
• Very conservative when the number of candidate trees is large
• Can be corrected with weighted SH-test overcomes.
• Approximately Unbiased Test
• Achieves weighted by varying bootstrap size for each tree.
• Better for larger comparisons, can have issues with P-space
curvature.

• Swofford–Olsen–Waddell–Hillis same idea but uses parametric
bootstraps instead.

• Sensitive to model misspecification.
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From A Single Gene to Many
Genes



Core vs Pan-Genome

• How do we go from a bunch of individual genes to a species
phylogeny?
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Venn/Euler plots should be avoided
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Why can’t just use a single gene tree?
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Paralogy
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Paralogy
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Hidden Paralogy

35



Incomplete Lineage Sorting
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Lateral/Horizontal Gene Transfer
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Supermatrix and SuperTrees
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Supermatrix Evolution Models
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Gene Partitions
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Gamma Rates
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Mixture Models
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Supermatrix

• Can be very computationally demanding
• Variable evolutionary rates/models combined (one-size fits all)
• CAT model does offer a solution but can overfit.
• More robust to random error when phylogenetic signal is
consistent.
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SuperTree

• Allows reconciliation of partial overlaps (i.e. not just core
genome)

• Faster/more tractable
• Observed to have lower accuracy generally but more robust to
incongruent signal (i.e. frequent HGT).
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Coalescent Theory
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Identifying HGT with phylogenies
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Schematic HGT Tree

• (A) Need strong branch support for recipient branching with
donor lineages

• (B) Need strong support for recipient branching within donor
lineages
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Different Types result in different topologies
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Real HGT
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Real HGT
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Real HGT
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West African Ebola Epidemic
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Haitian Cholera Outbreak: Identifying the origin
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Haitian Cholera Outbreak: Identifying the origin
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Finding zoonoses

55



Conclusion



Summary

• Phylogenies are hypothesis and their inference includes
assumptions that need testing.

• Bootstrapping is a slow, biased but conservative way to estimate
the support for a given branch in your tree.

• Comparing trees directly is non-trivial due to tree-space.
• Supermatrix and supertree approaches allow reconciliation of
data from multiple genes.

• Incongruence between the species tree and the gene tree might
be evidence for HGT.

• Phylogenies can be used to trace outbreak origins and
parameters.
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Questions?
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