# **Using Phylogenies**

Assessing Robustness and Genomic Epidemiology

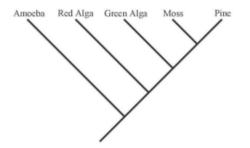
Finlay Maguire April 1, 2020

FCS, Dalhousie

#### Table of contents

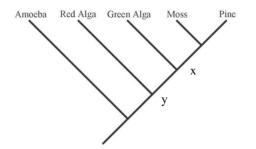
- 1. Tree Thinking Refresher
- 2. Sequence Model Selection
- 3. Branch Support Testing
- 4. Comparing Trees
- 5. From A Single Gene to Many Genes
- 6. Genomic Epidemiology Phylogenetics
- 7. Conclusion

# **Tree Thinking Refresher**



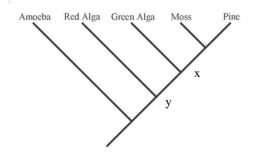
which of the following is an accurate statement of relationships?

- 1. A green alga is more closely related to a red alga than to a moss
- 2. A green alga is more closely related to a moss than to a red alga
- 3. A green alga is equally related to a red alga and a moss
- 4. A green alga is related to a red alga, but is not related to a moss



which of the following is an accurate statement of relationships?

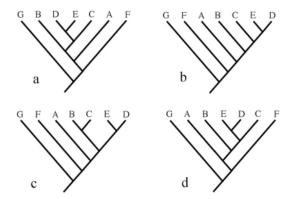
- 1. A green alga is more closely related to a red alga than to a moss
- 2. A green alga is more closely related to a moss than to a red alga
- 3. A green alga is equally related to a red alga and a moss
- 4. A green alga is related to a red alga, but is not related to a moss



which of the following is an accurate statement of relationships?

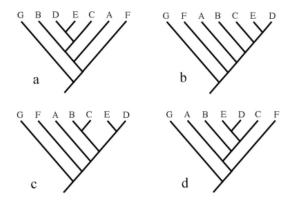
- 1. A green alga is more closely related to a red alga than to a moss
- 2. A green alga is more closely related to a moss than to a red alga
- 3. A green alga is equally related to a red alga and a moss
- 4. A green alga is related to a red alga, but is not related to a moss

# **Comparing Topologies**



Which of the four trees depicts a different pattern of relationships to the others?

# **Comparing Topologies**



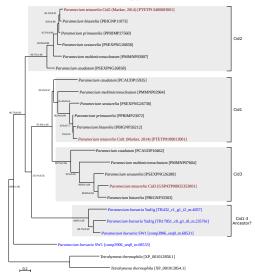
Which of the four trees depicts a different pattern of relationships to the others?

**c**: C is more closely related to E and D than to B in other trees.

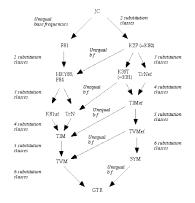
# Sequence Model Selection

#### Phylogenies are hypotheses

Cid

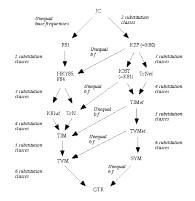


## Hypothesis testing



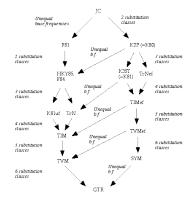
- · Does another model of sequence evolution fit the data better?
- · How well supported are individual branches in a tree?
- Does another tree explain the data better?

#### How do we select a sequence model?



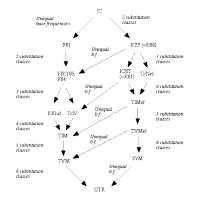
• Likelihood ratio test (LRT  $\delta$  i.e. p(data| model)

#### How do we select a sequence model?



- Likelihood ratio test (LRT  $\delta$  i.e. p(data| model)
- $\cdot \ \delta = 2(ln(L_1) ln(L_0))$

#### How do we select a sequence model?



- Likelihood ratio test (LRT  $\delta$  i.e. p(data| model)
- $\cdot \ \delta = 2(ln(L_1) ln(L_0))$
- Limitations: nested models (i.e. hLRT), order matters, no regularisation

• Akaike Information Criterion (AIC), penalising number of parameters:

- Akaike Information Criterion (AIC), penalising number of parameters:
- · AIC = -2ln(L) + 2K

- Akaike Information Criterion (AIC), penalising number of parameters:
- AIC = -2ln(L) + 2K
- However, this penalises all high K models even if sample size is large too.

- Akaike Information Criterion (AIC), penalising number of parameters:
- AIC = -2ln(L) + 2K
- However, this penalises all high K models even if sample size is large too.
- Corrected Akaike Information Criterion (AICc)

- Akaike Information Criterion (AIC), penalising number of parameters:
- AIC = -2ln(L) + 2K
- However, this penalises all high K models even if sample size is large too.
- Corrected Akaike Information Criterion (AICc)
- AICc = AIC +  $\frac{2K(K+1)}{n-K-1}$

- Akaike Information Criterion (AIC), penalising number of parameters:
- AIC = -2ln(L) + 2K
- However, this penalises all high K models even if sample size is large too.
- Corrected Akaike Information Criterion (AICc)
- AICc = AIC +  $\frac{2K(K+1)}{n-K-1}$
- Alternatively, there is the Bayesian Information Criterion (**BIC**):

- Akaike Information Criterion (AIC), penalising number of parameters:
- AIC = -2ln(L) + 2K
- However, this penalises all high K models even if sample size is large too.
- Corrected Akaike Information Criterion (AICc)
- AICc = AIC +  $\frac{2K(K+1)}{n-K-1}$
- Alternatively, there is the Bayesian Information Criterion (**BIC**):
- BIC = -2ln(L) + Kln(n)

- Akaike Information Criterion (AIC), penalising number of parameters:
- AIC = -2ln(L) + 2K
- However, this penalises all high K models even if sample size is large too.
- Corrected Akaike Information Criterion (AICc)
- AICc = AIC +  $\frac{2K(K+1)}{n-K-1}$
- Alternatively, there is the Bayesian Information Criterion (**BIC**):
- BIC = -2ln(L) + Kln(n)
- Decision Theory (DT) risk minimisation approach.

• What if everything fits poorly?

- What if everything fits poorly?
- Information criterion test relative goodness of fit instead of absolute

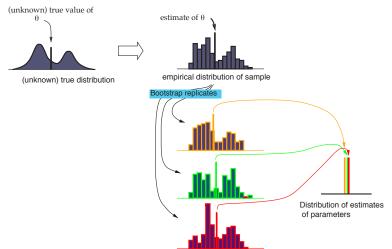
- What if everything fits poorly?
- Information criterion test relative goodness of fit instead of absolute
- Parametric Bootstrapping/Posterior Predictive Simulation

- What if everything fits poorly?
- Information criterion test relative goodness of fit instead of absolute
- Parametric Bootstrapping/Posterior Predictive Simulation
- If the model is reasonable then data simulated under should resemble the empirical data

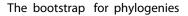
# Branch Support Testing

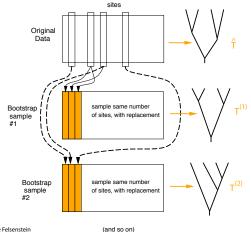
## Bootstrapping in General



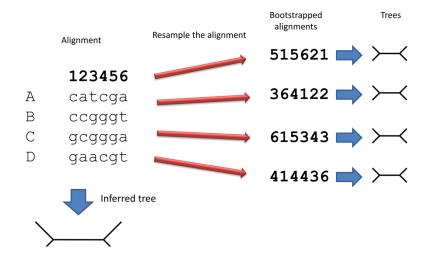


#### **Bootstrapping Phylogenies**



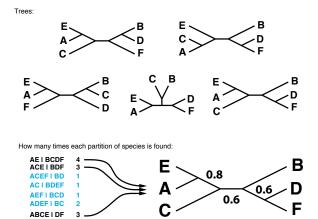


#### **Bootstrapping Phylogenies**

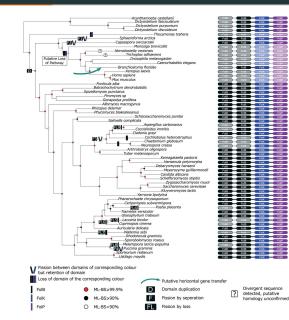


#### **Bootstrapping Phylogenies**

#### The majority-rule consensus tree



#### Combining the results



• Randomly reweighing the sites in an alignments

- Randomly reweighing the sites in an alignments
- Probability of a site being excluded  $1 \frac{1}{n}n$

- Randomly reweighing the sites in an alignments
- Probability of a site being excluded  $1 \frac{1}{n}n$
- Asymptotically approximately 0.36

- Randomly reweighing the sites in an alignments
- Probability of a site being excluded  $1 \frac{1}{n}n$
- Asymptotically approximately 0.36
- Goal to simulate an infinite population (number of alignment columns)

• Typically underestimates the true probabilities

- Typically underestimates the true probabilities
- i.e biased but conservative

- Typically underestimates the true probabilities
- i.e biased but conservative
- Computationally demanding

- Typically underestimates the true probabilities
- i.e biased but conservative
- Computationally demanding
- Assumes independence of sites

- Typically underestimates the true probabilities
- i.e biased but conservative
- Computationally demanding
- Assumes independence of sites
- Relies on good input data

- Typically underestimates the true probabilities
- i.e biased but conservative
- Computationally demanding
- Assumes independence of sites
- Relies on good input data
- Only answers to what extent does input data support a given part of the tree

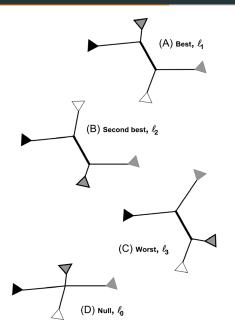
- Simulate data sets of this size assuming the estimate of the tree is the truth
- Key for many more sophisticated tests.
- · Can be used to generate *p*-values, but non-trivial

• Resampling estimated log-likelihoods (RELL)

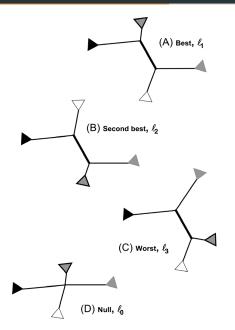
- Resampling estimated log-likelihoods (RELL)
- Instead of re-doing the full ML inference just re-sample the site ln(L) values and sum

- Resampling estimated log-likelihoods (RELL)
- Instead of re-doing the full ML inference just re-sample the site ln(L) values and sum
- Rapid Bootstraps (**RBS**)

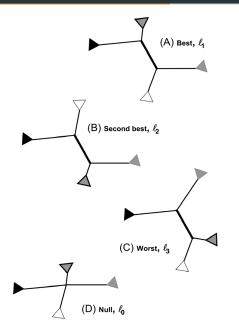
- Resampling estimated log-likelihoods (RELL)
- Instead of re-doing the full ML inference just re-sample the site ln(L) values and sum
- Rapid Bootstraps (RBS)
- Ultrafast Bootstraps (UFBoot)



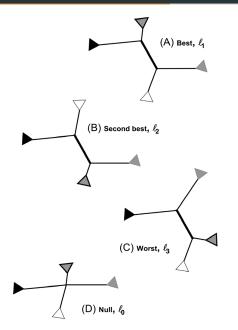
• Comparing the 3 nearest NNIs to a given branch:



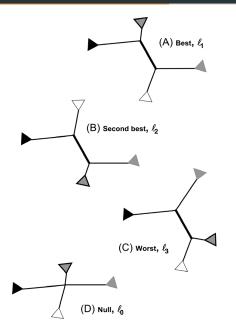
- Comparing the 3 nearest NNIs to a given branch:
- Parametric **aLRT**:  $\chi^2$  of  $\delta$  for branch vs. closest NNIs



- Comparing the 3 nearest NNIs to a given branch:
- Parametric **aLRT**:  $\chi^2$  of  $\delta$  for branch vs. closest NNIs
- Non-parametric SH-aLRT based on RELL



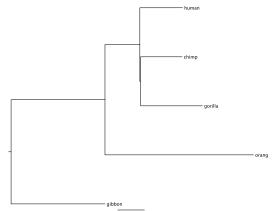
- Comparing the 3 nearest NNIs to a given branch:
- Parametric **aLRT**:  $\chi^2$  of  $\delta$  for branch vs. closest NNIs
- Non-parametric **SH-aLRT** based on RELL
- · aBayes:



- Comparing the 3 nearest NNIs to a given branch:
- Parametric **aLRT**:  $\chi^2$  of  $\delta$  for branch vs. closest NNIs
- Non-parametric **SH-aLRT** based on RELL
- aBayes:
- $P(T_c \mid X) = \frac{P(X|T_c)P(T_c)}{\sum_i^2 = 0P(X||T_i)P(T_i)}$  with flat prior  $P(T_0) = P(T_1) = P(T_2)$

# Comparing Trees

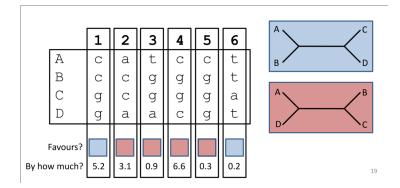
# How to compare competing hypotheses?

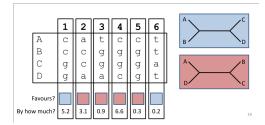


# How to compare competing hypotheses?

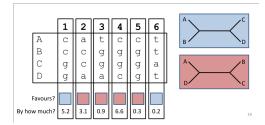


## Simplistic Comparison

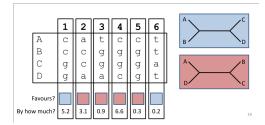




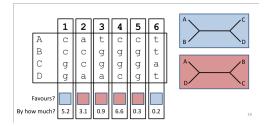
• 4 sites favour the red tree, 2 favour the blue



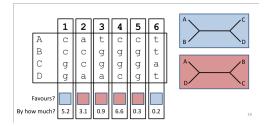
- 4 sites favour the red tree, 2 favour the blue
- $\binom{n}{k} p^{k} (1-p)^{n-k}$



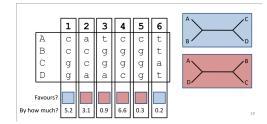
- 4 sites favour the red tree, 2 favour the blue
- $\binom{n}{k}p^k(1-p)^{n-k}$
- 4 out of 6 p = 0.6875



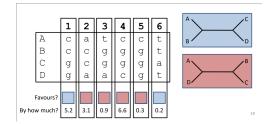
- 4 sites favour the red tree, 2 favour the blue
- $\binom{n}{k}p^k(1-p)^{n-k}$
- 4 out of 6 *p* = 0.6875
- 40 out of 60 p = 0.0124



- 4 sites favour the red tree, 2 favour the blue
- $\binom{n}{k}p^k(1-p)^{n-k}$
- 4 out of 6 *p* = 0.6875
- 40 out of 60 *p* = 0.0124
- 400 out of 600  $p = 2.3 * 10^{-16}$

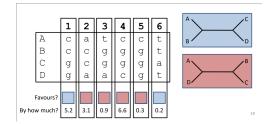


• 
$$\mu = (-5.2 + 3.1 + 0.9 + 6.6 + 0.3 - 0.2)/6 = 0.916$$



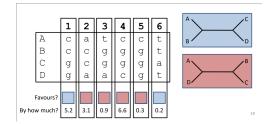
• 
$$\mu = (-5.2 + 3.1 + 0.9 + 6.6 + 0.3 - 0.2)/6 = 0.916$$

•  $\sigma^2 = 15.22$ 



• 
$$\mu = (-5.2 + 3.1 + 0.9 + 6.6 + 0.3 - 0.2)/6 = 0.916$$

- $\sigma^2 = 15.22$   $t = \frac{\mu}{\sigma^2} * \sqrt{N} = 0.148$



- $\mu = (-5.2 + 3.1 + 0.9 + 6.6 + 0.3 0.2)/6 = 0.916$
- $\sigma^2 = 15.22$
- $t = \frac{\mu}{\sigma^2} * \sqrt{N} = 0.148$
- therefore: p = 0.888 under 5*d.f.*

• Null: if no sampling error (infinite data) *T*<sub>1</sub> and *T*<sub>2</sub> would explain the data equally well.

- Null: if no sampling error (infinite data) *T*<sub>1</sub> and *T*<sub>2</sub> would explain the data equally well.
- $\cdot \ \delta(X \mid T_1, T_2) = 2 \left[ \ln L(X \mid T_1) \ln L(X \mid T_2) \right]$

- Null: if no sampling error (infinite data) *T*<sub>1</sub> and *T*<sub>2</sub> would explain the data equally well.
- $\delta(X \mid T_1, T_2) = 2 [\ln L(X \mid T_1) \ln L(X \mid T_2)]$
- Expectation under null  $\mathbb{E}[\delta(X \mid T_1, T_2)] = 0$

- Null: if no sampling error (infinite data) *T*<sub>1</sub> and *T*<sub>2</sub> would explain the data equally well.
- $\delta(X \mid T_1, T_2) = 2 [\ln L(X \mid T_1) \ln L(X \mid T_2)]$
- Expectation under null  $\mathbb{E} [\delta(X \mid T_1, T_2)] = 0$
- Why can't we just use  $\chi^2$  to get a critical value for  $\delta$ ?

- Null: if no sampling error (infinite data) *T*<sub>1</sub> and *T*<sub>2</sub> would explain the data equally well.
- $\delta(X \mid T_1, T_2) = 2 [\ln L(X \mid T_1) \ln L(X \mid T_2)]$
- Expectation under null  $\mathbb{E} [\delta(X \mid T_1, T_2)] = 0$
- Why can't we just use  $\chi^2$  to get a critical value for  $\delta$ ?
- Tree space is difficult.

- Many avenues:
- Non-parametric bootstrapping
- Parametric bootstrapping
- Related approaches.

· Shimodaira-Hasegawa Test

- · Shimodaira-Hasegawa Test
- Compares candidate tree sets

- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$ all topologies equally good

- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- Very conservative when the number of candidate trees is large

- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.

- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- Approximately Unbiased Test

- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$  all topologies equally good
- Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- Approximately Unbiased Test
- Achieves weighted by varying bootstrap size for each tree.

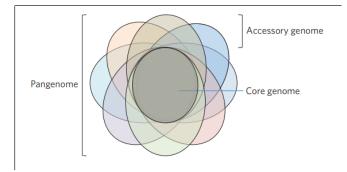
- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$  all topologies equally good
- Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- Approximately Unbiased Test
- Achieves weighted by varying bootstrap size for each tree.
- Better for larger comparisons, can have issues with P-space curvature.

- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- · Approximately Unbiased Test
- Achieves weighted by varying bootstrap size for each tree.
- Better for larger comparisons, can have issues with P-space curvature.
- Swofford-Olsen-Waddell-Hillis same idea but uses parametric bootstraps instead.

- Shimodaira-Hasegawa Test
- Compares candidate tree sets
- $H_0 =$  all topologies equally good
- Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- · Approximately Unbiased Test
- Achieves weighted by varying bootstrap size for each tree.
- Better for larger comparisons, can have issues with P-space curvature.
- Swofford-Olsen-Waddell-Hillis same idea but uses parametric bootstraps instead.
- Sensitive to model misspecification.

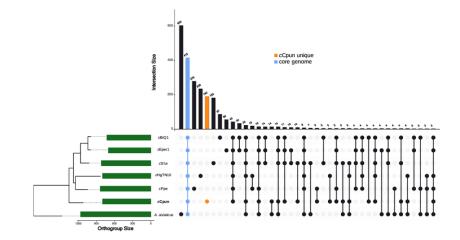
# From A Single Gene to Many Genes

### Core vs Pan-Genome

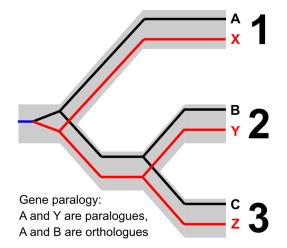


• How do we go from a bunch of individual genes to a species phylogeny?

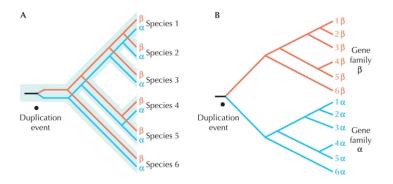
# Venn/Euler plots should be avoided

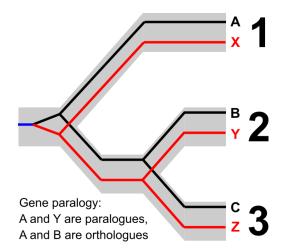


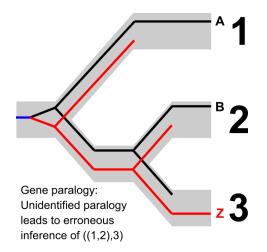
# Why can't just use a single gene tree?



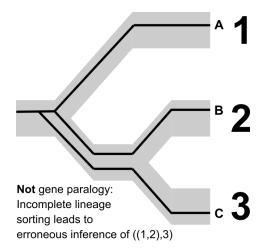
Paralogy



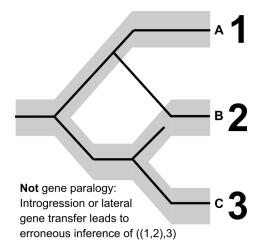




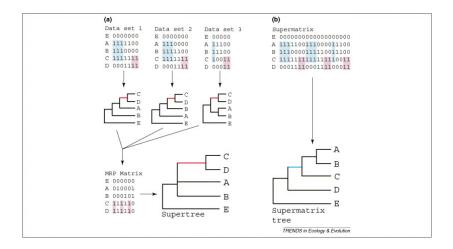
# Incomplete Lineage Sorting



# Lateral/Horizontal Gene Transfer

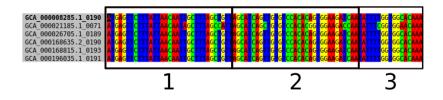


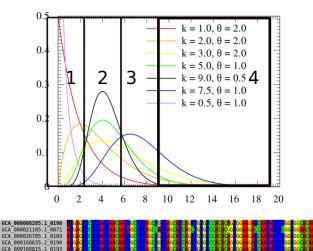
### Supermatrix and SuperTrees

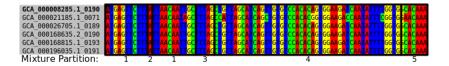


# Supermatrix Evolution Models

| GCA_000008285.1_0190 | ATGAGTTCTTTATTAACAATT | GCTTTAGCTGTTAGCATCAGTTGTGTCCACACAGTGGAAGATCAATATTTTGGTGGCACAA                                                                             |
|----------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| GCA_000021185.1_0071 | ATGAGTTCTTTATTAACAATA | I <mark>GCTTTAGCCATTAGCATCAGCTGTGTCCACACGGT</mark> GGAAGA <mark>CC</mark> AATATTT <mark>C</mark> GG <mark>T</mark> GGAA <mark>C</mark> AA |
| GCA_000026705.1_0189 | ATGAGTTCTTTATTAACAATT | <mark>GCTTTAGCTGTTAGCATCAGTTGTGTCCACACAGT</mark> GGAAGA <mark>TC</mark> AATATTTTGGTGG <mark>C</mark> ACAA                                 |
| GCA 000168635.2_0190 | ATGAGTTCTTTATTAACAATT | GCTTTAGCTGTTAGCATCAGTTGTGTCCACAGTGGAAGATCAATATTTTGGTGGCACAA                                                                               |
| GCA_000168815.1_0193 | ATGAGTTCTTTATTAACAATT | I <mark>get titaget gittageateagtt gtgteeacaeagtggaagateaatatttttggtggea</mark> caa                                                       |
| GCA 000196035.1 0191 | ATGAGTTCTTTATTAACAATT | GCTTTAGCT GTTAGCATCAGTTGTGTCCACACAGTGGAAGATCAATATTTTGGTGGCACAA                                                                            |

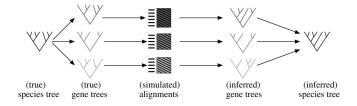






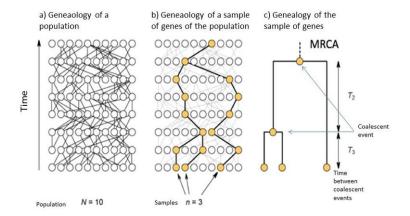
- Can be very computationally demanding
- Variable evolutionary rates/models combined (one-size fits all)
- CAT model does offer a solution but can overfit.
- More robust to random error when phylogenetic signal is consistent.

### SuperTree



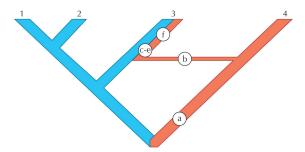
- Allows reconciliation of partial overlaps (i.e. not just core genome)
- Faster/more tractable
- Observed to have lower accuracy generally but more robust to incongruent signal (i.e. frequent HGT).

# **Coalescent Theory**



Genomic Epidemiology Phylogenetics

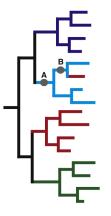
# Identifying HGT with phylogenies



**FIGURE 27.30.** Stages in lateral gene transfer (LGT). The evolution of four species and one example of LGT are shown. Some key steps in LGT are labeled: (a) Divergence of genomes of different lineages; (b) movement of DNA from one lineage to another; (c) maintenance and replication of the foreign DNA; (d) possible positive selection for the foreign DNA; (e) spread into the new species' population; (f) amelioration. (Modified from Penny D. and Poole A. *Curr. Opin. Genet. Dev.* **9**: 672–677, © 1999 Elsevier.)

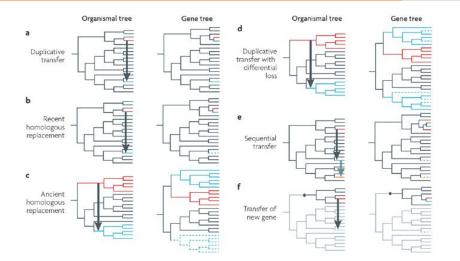
Evolution © 2008 Cold Spring Harbor Laboratory Press

# Schematic HGT Tree



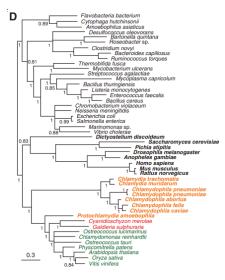
- (A) Need strong branch support for recipient branching with donor lineages
- (B) Need strong support for recipient branching within donor lineages

# Different Types result in different topologies

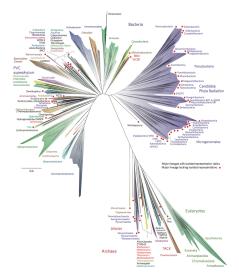


Nature Reviews | Genetics

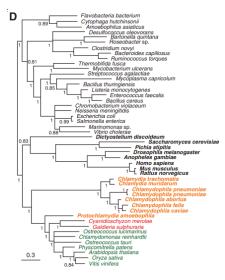
#### **Real HGT**



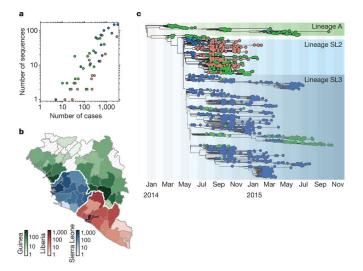
### **Real HGT**



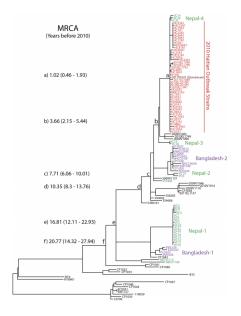
#### **Real HGT**



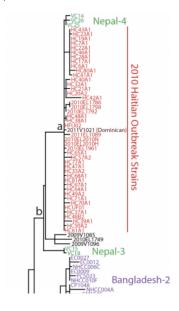
#### West African Ebola Epidemic



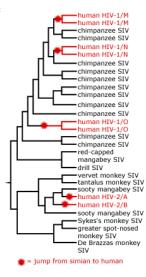
### Haitian Cholera Outbreak: Identifying the origin



# Haitian Cholera Outbreak: Identifying the origin



### **Finding zoonoses**



Conclusion

• Phylogenies are hypothesis and their inference includes assumptions that need testing.

- Phylogenies are hypothesis and their inference includes assumptions that need testing.
- Bootstrapping is a slow, biased but conservative way to estimate the support for a given branch in your tree.

- Phylogenies are hypothesis and their inference includes assumptions that need testing.
- Bootstrapping is a slow, biased but conservative way to estimate the support for a given branch in your tree.
- Comparing trees directly is non-trivial due to tree-space.

- Phylogenies are hypothesis and their inference includes assumptions that need testing.
- Bootstrapping is a slow, biased but conservative way to estimate the support for a given branch in your tree.
- Comparing trees directly is non-trivial due to tree-space.
- Supermatrix and supertree approaches allow reconciliation of data from multiple genes.

- Phylogenies are hypothesis and their inference includes assumptions that need testing.
- Bootstrapping is a slow, biased but conservative way to estimate the support for a given branch in your tree.
- Comparing trees directly is non-trivial due to tree-space.
- Supermatrix and supertree approaches allow reconciliation of data from multiple genes.
- Incongruence between the species tree and the gene tree might be evidence for HGT.

- Phylogenies are hypothesis and their inference includes assumptions that need testing.
- Bootstrapping is a slow, biased but conservative way to estimate the support for a given branch in your tree.
- Comparing trees directly is non-trivial due to tree-space.
- Supermatrix and supertree approaches allow reconciliation of data from multiple genes.
- Incongruence between the species tree and the gene tree might be evidence for HGT.
- Phylogenies can be used to trace outbreak origins and parameters.

# **Questions?**