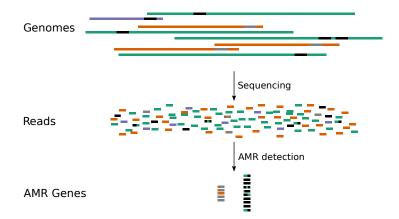
AMRtime

Precise identification of antimicrobial resistance determinants from metagenomic data

Finlay Maguire finlaymaguire@gmail.com


December 3, 2019

Faculty of Computer Science, Dalhousie University

- 1. Background
- 2. AMRtime Overview
- 3. Filtering out non-AMR reads
- 4. Sensitive Homology Classification

Background

AMR-metagenomics

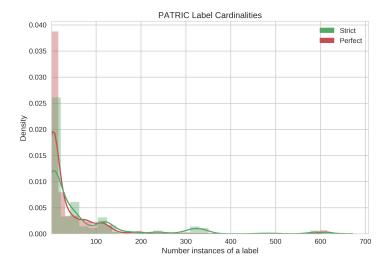
Comprehensive Antibiotic Resistance Database

cmlA1

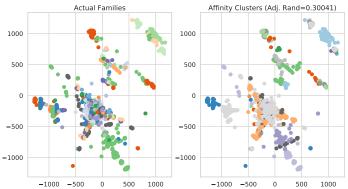
Download Sequences

Accession	ARO:3002693
Definition	cmlA1 is a plasmid or transposon-encoded chloramphenicol exporter that is found in Pseudomonas aeruginosa and Klebsiella pneumoniae
AMR Gene Family	major facilitator superfamily (MFS) antibiotic efflux pump
Drug Class	phenicol antibiotic
Resistance Mechanism	antibiotic efflux
Efflux Component	efflux pump complex or subunit conferring antibiotic resistance
Classification	7 ontology terms Hide + process or component of antibiotic biology or chemistry + mechanism of antibiotic resistance + determinant of antibiotic resistance + antibiotic molecule + antibiotic efflux [Resistance Mechanism] + phenicol antibiotic [Drug Class] + efflux pump complex or subunit conferring antibiotic resistance [Efflux Component]
Parent Term(s)	2 ontology terms <u>Hide</u> + major facilitator superfamily (MES) antibiotic efflux pump [AMR Gene Family] + confers_resistance_to_drug <u>chloramphenicol</u> [Antibiotic]
Publications	Bissonnette L, et al. 1991. J Bacteriol 173(14): 4493-4502. Characterization of

card.mcmaster.ca

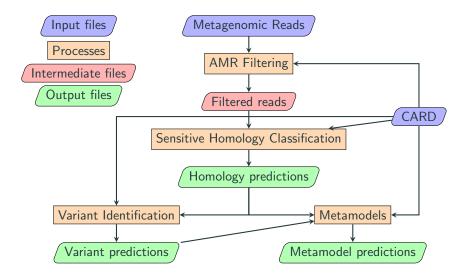

Why is AMR metagenomics difficult?

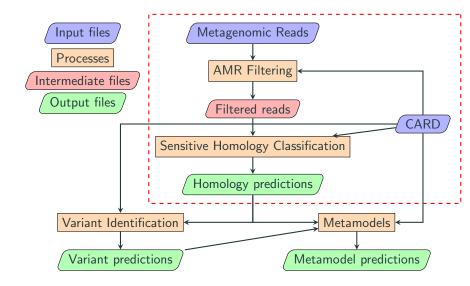
AMR Reads in Metagenome (0.643%)

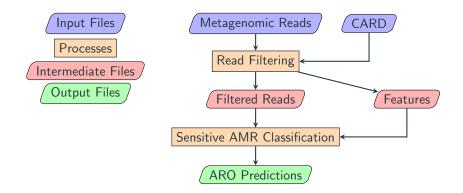

2184 CARD-Prevalence Genomes at 1-10X abundance

AMR genes have wildly different abundances

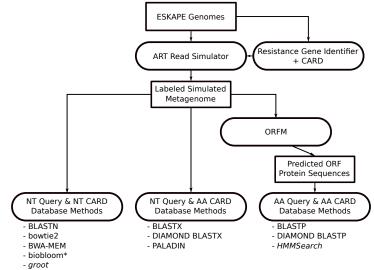
1236 AMR PATRIC genomes

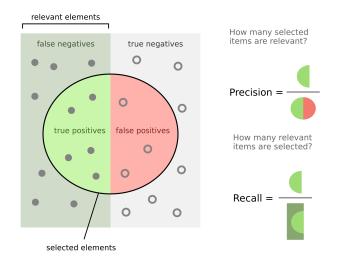

AMR sequence space overlaps


MDS of CARD Proteins BLASTP-%ID

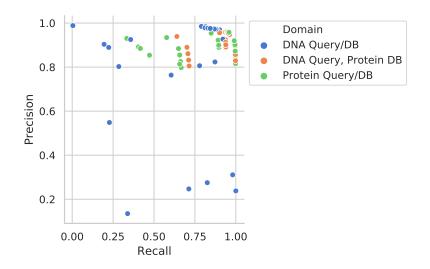

AMRtime Overview

AMRtime structure


AMRtime structure

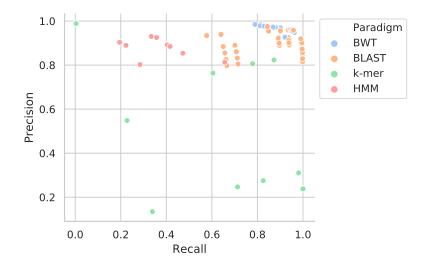

Filtering out non-AMR reads

Testing sequence similarity search tools

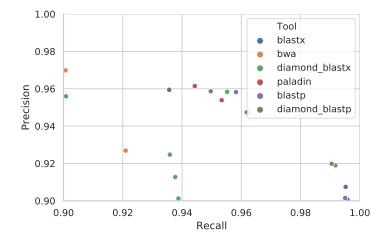


- HMMSearch

Terminology refresher interlude

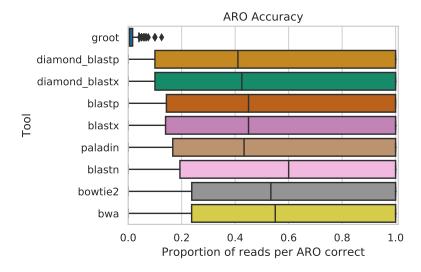


https://commons.wikimedia.org/wiki/File:Precisionrecall.svg

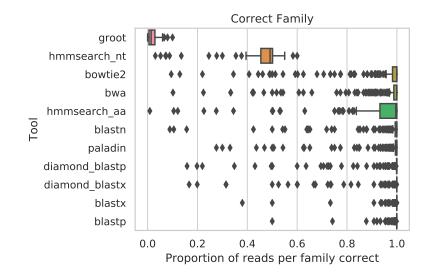

Simulated MiSeq v3 250bp reads, 30.31M reads (7.21M AMR derived)

K-mer methods perform poorly

BWT: bowtie2, bwa-mem, paladin; **BLAST:** blast, diamond; **HMM:** hmmsearch; **K-MER:** biobloom, groot.


DIAMOND-BLASTX best compromise

DIAMOND-BLASTX 'more sensitive' setting (min $< 1e^{-10}$): 4.926 hours with 2 cores and 8.3Gb of memory. AMR Reads: 7.15M detected, 59.26K missed, 1.87M false positives.


Why not just use these sequence searches?

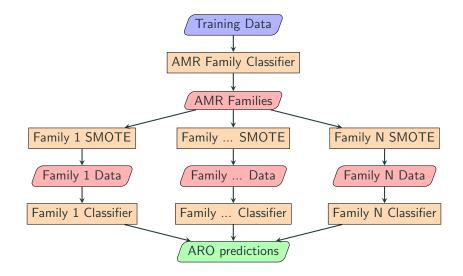
Poor gene-level accuracy

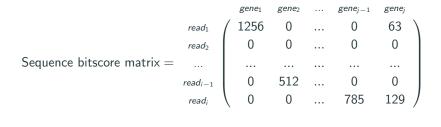
Performance at optimal settings for ARO accuracy

Good family-level accuracy

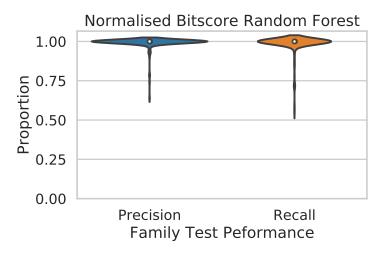
Performance at optimal settings for Family accuracy

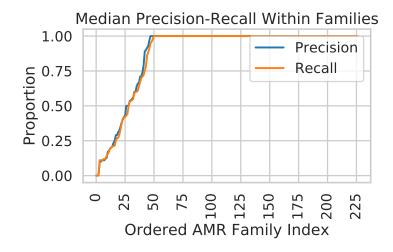
Sensitive Homology Classification




NB 7-mer Average Precision: 0.63

NB 7-mer Average Precision: 0.63 %


Revised classifier structure: exploiting the ARO


Advantages: read length invariant, low dimensionality, uses filtering data

Held-out test results

Mean Precision: 0.995, Mean Recall: 0.985

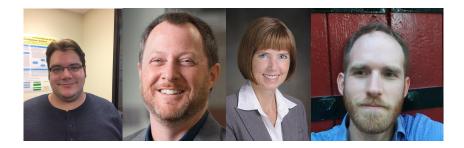
ARO level classification more variable

- Soft-threshold (i.e. propagating probabilities through layers)
- Multiset labels based on sequence redundancy within families.
- Threshold identification for variant model counts.
- Metamodel rule parsing.
- Galaxy bindings (CARD/IRIDA integration).

Summary

• Direct homology searches are suprisingly poor for AMR metagenomics.

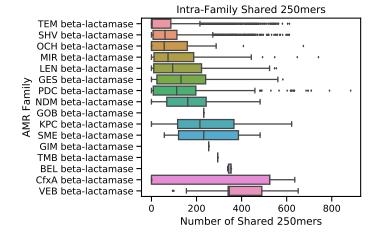
- Direct homology searches are suprisingly poor for AMR metagenomics.
- K-mer based approaches fall flat with sequencing error, low coverage and sparse labels.

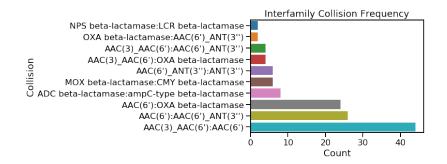

- Direct homology searches are suprisingly poor for AMR metagenomics.
- K-mer based approaches fall flat with sequencing error, low coverage and sparse labels.
- Direct homology search results ARE useful when combined with machine learning.

- Direct homology searches are suprisingly poor for AMR metagenomics.
- K-mer based approaches fall flat with sequencing error, low coverage and sparse labels.
- Direct homology search results ARE useful when combined with machine learning.
- The Antibiotic Resistance Ontology provides useful structure to improve predictions.

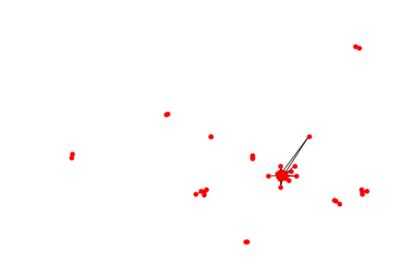
- Direct homology searches are suprisingly poor for AMR metagenomics.
- K-mer based approaches fall flat with sequencing error, low coverage and sparse labels.
- Direct homology search results ARE useful when combined with machine learning.
- The Antibiotic Resistance Ontology provides useful structure to improve predictions.
- AMRtime: coming soon to CARD and your local government genomic epidemiology platform.

Acknowledgements


Acknowledgements


- McMaster University: Brian Alcock and Andrew McArthur
- Simon Fraser University: Fiona Brinkman
- Dalhousie University: Robert Beiko
- Funding: Donald Hill Family Fellowship, Genome Canada Grant.

Questions?


Insufficient Intrafamily Signal

Interfamily Collisions

Interfamily Collisions

