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Comprehensive Antibiotic Resistance Database
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Why is AMR metagenomics

difficult?



AMR genes are rare genomically
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2184 CARD-Prevalence Genomes at 1-10X abundance
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AMR genes have wildly different abundances

1236 AMR PATRIC genomes 5



AMR sequence space overlaps
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AMRtime Overview



AMRtime structure
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AMRtime structure
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Filtering out non-AMR reads



Testing sequence similarity search tools
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Terminology refresher interlude

https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
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DNA subject best for precision, Protein subject best for recall
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Simulated MiSeq v3 250bp reads, 30.31M reads (7.21M AMR derived)
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K-mer methods perform poorly
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BWT: bowtie2, bwa-mem, paladin; BLAST: blast, diamond; HMM:

hmmsearch; K-MER: biobloom, groot.
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DIAMOND-BLASTX best compromise

0.90 0.92 0.94 0.96 0.98 1.00
Recall

0.90

0.92

0.94

0.96

0.98

1.00
Pr

ec
isi

on
Tool
blastx
bwa
diamond_blastx
paladin
blastp
diamond_blastp

DIAMOND-BLASTX ‘more sensitive’ setting (min < 1e−10): 4.926 hours with

2 cores and 8.3Gb of memory. AMR Reads: 7.15M detected, 59.26K missed,

1.87M false positives. 14



Why not just use these sequence

searches?



Poor gene-level accuracy
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Good family-level accuracy
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Sensitive Homology Classification



Initial classifier

Training Data

Classifier

ARO predictions

NB 7-mer Average Precision: 0.63 %
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Revised classifier structure: exploiting the ARO

Training Data

AMR Family Classifier
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Family ... Data
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Read encoding

Sequence bitscore matrix =



gene1 gene2 ... genej−1 genej

read1 1256 0 ... 0 63

read2 0 0 ... 0 0

... ... ... ... ... ...

readi−1 0 512 ... 0 0

readi 0 0 ... 785 129


Advantages: read length invariant, low dimensionality, uses filtering data
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Held-out test results
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ARO level classification more variable
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On-going work

• Soft-threshold (i.e. propagating probabilities through layers)

• Multiset labels based on sequence redundancy within families.

• Threshold identification for variant model counts.

• Metamodel rule parsing.

• Galaxy bindings (CARD/IRIDA integration).
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Summary



Conclusions

• Direct homology searches are suprisingly poor for AMR

metagenomics.

• K-mer based approaches fall flat with sequencing error, low coverage

and sparse labels.

• Direct homology search results ARE useful when combined with

machine learning.

• The Antibiotic Resistance Ontology provides useful structure to

improve predictions.

• AMRtime: coming soon to CARD and your local government

genomic epidemiology platform.
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Questions?
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Insufficient Intrafamily Signal
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Interfamily Collisions



Interfamily Collisions
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