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bursaria

ABSTRACT

The photosynthetic endosymbioses between Paramecium bursaria and its green algal endosym-
bionts (Chlorella variabilis, Chlorella vulgaris, Micractinium reisseri and Coccomyxa sp.) have long
been suggested to represent nascent endosymbiotic interactions as host and endosymbiont are
believed to be able to exist and reproduce separately. Understanding the molecular systems un-
derpinning these relationships would therefore provide a model system to investigate the process
of photosynthetic endosymbioses before molecular co-dependence has become fixed (leading to
genomic integration). To this end, the metatranscriptome of P. bursaria-M. reisseri during lit and
dark conditions was recovered using single cell methods. This necessitated the development of
novel techniques to optimise the assembly and the post-assembly attribution of transcripts to
their originating organism. This work represents the first de novo single cell transcriptomic analy-
sis of a multi-member eukaryotic system.

Metabolic function was then analysed in this system using both transcriptomic and metabolomics
data. This identified potential roles for novel sugar, amino acid, and fatty acid interactions in the
M. reisseri endosymbiosis. Additionally, P. bursaria SW1 was determined to potentially form a
obligate host of M. reisseri SW1-ZK.

Finally, this work also revealed a putative non-functional exogenous RNA induced RNAi sys-
tem in P. bursaria potentially related to the absence of a factor associated with uptake of RNA
from host vacuoles in both P. bursaria transcriptomes and a partial P. bursaria single cell genome.
An analysis of the level of potential RNAi “cross-talk” collisions with the active host transcrip-
tome suggests that the function of an exogenous RNA induced RNAi system in the presence of a
eukaryotic endosymbiont may be deleterious.

Therefore, despite discovering several barriers to the utility of these systems for studying en-
dosymbiotic evolution there is still benefit to their study. The “omic” resources and analyses pre-
sented here offer an important dataset to inform further analysis.
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Maths Notation

Throughout this thesis several standard mathematical conventions have been used (inline with
the ISO80000-2 regulations for technical writing ISO International Standard (2009)).

Specifically (unless the object is a specific quantity with a pre-established symbol), matrices
are denoted by boldface italic capital letters (A, B, X) and their elements by standard italic
lower case letters indexed using subscripts (i.e. a;; is the element i, j of the matrix A). Vectors are
denoted by an arrow above standard italic lowercase letters (¥, y, Z) with their elements indicated
in the same manner as matrix elements (x; is the ith element of the vector x). Tensors of third
and higher orders are represented by boldface italic sans serif capitals (T, L). Finally, scalars and
variables which may be a tensor of any order are denoted by standard lowercase italic elements
(k,n,p).

Norms are used and denoted in standard linear algebra fashion e.g. the norm of a scalar is
equivalent to its absolute value (||n|| = |n|). Unless stated otherwise all matrix and vector norms
(|[All, ||¥]]) are the £ — 2 (or Euclidean) norms. Otherwise the norm is indicated by a subset
number in place of p: ||x||, = (z:’:1|xi|f’);7. When applied to a set (e.g. x = {o,1,2}) |«|
indicates the cardinality.
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Hofstadter’s Law: It always takes longer than you expect,

even when you take into account Hofstadter’s law

- Douglas Hofstadter: Gddel, Escher, Bach: An Eternal

Golden Braid, 1979

Introduction

1.1 ENDOSYMBIOSIS

1.1.1 WHAT IS ENDOSYMBIOSIS?

Endosymbiosis has proven one of the most fundamental processes in the evolution of the eukary-
otic cell (Timmis et al., 2004; Lane, 2007; Martin and Herrmann, 1998; Archibald, 2015). It has
both shaped the global climate and created the cellular context in which specialised multicellular
organisms have evolved.

Endosymbiosis is a special case of symbiosis, which is the long-term stable interdependent liv-
ing together (“sym/abv” — together, “bios/Biwaig” - living) of two or more organisms to a point of
mutual benefit (de Bary, 1869; Pound, 1893 ).! What differentiates endosymbiosis from symbio-

sis in general is that one partner (the endosymbiont) lives wholly inside (“endo/#v80v” - inside)

!Many now expand this definition beyond mutualism to include other categories of biological interactions
(table 1.1.1) (Leung and Poulin, 2008; O’Malley, 2015)
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of another (the host). This “inside” can refer to symbionts either living intracellularly or within
the tissues of multicellular organisms. However, it excludes niches such as the digestive tract of
metazoa as this can be considered as an external surface of the host. These latter symbionts are

occasionally termed ectosymbionts.

Interaction Name | Interaction Outcome
Mutualism (+,+)
Antagonism (+,—)
Competition (—,—)
Commensalism (+,0)
Amensalism (—,0)
Neutralism (0,0)

Table 1.1.1: An overview of the categories of biological interaction and the effect they have
on the two interacting biological units, which may be anything from individual species to
whole populations. The outcome column contains a tuple relating the effect an interaction
has on a pair of interacting biological units. This “effect” is often assessed in terms of met-
rics such as individual fitness, population size and/or growth rate. Specifically, ‘4 repre-
sents a positive, ‘—" a negative, and ‘o’ a neutral outcome. Therefore, (4, +) indicates an
interaction which is beneficial to both partners and (4, 0) one that is beneficial to one part-
ner and neutral to the other. Note: parasitism and predation are mechanisms by which an
antagonistic interaction may take place (Abrams, 1987) in the same sense that endosymbio-
sis is a mechanism by which a mutualistic interaction can take place. In reality most interac-
tions will not fall neatly into one of these categories and throughout its duration will often
display characteristics of multiple categories (Leung and Poulin, 2008)

There is a considerable diversity of endosymbiotic relationships in nature. These relation-
ships can encompass many different degrees of host-symbiont integration, interdependence and
ecological interaction types (table 1.1.1). Even if we restrict ourselves to endosymbioses that are
largely “mutualistic” there is a broad range of characteristics.?

For example, in terms of interdependence of host and endosymbiont you can construct a
spectrum (fig. 1.1.1) with “incidental” endosymbioses such as bacterial or fungal escape of di-

gestion in macrophages at one extreme and at the other obligate systems such as the mitochon-

Noting that the exact nature of a certain endosymbiosis is highly dependent on the specific ecological context
at a particular point of time

3Attempting to classify endosymbioses leads us into the territory of a common motif of biology: the applica-
tion of discrete schemas to continuous distributions of traits. These biological quantisations are prone to error
(fuzzy delineations) and are constantly challenged by novel discoveries which exhibit a mosaic of category fea-
tures. There are many examples of this such as the classification of mitochondria-related organelles (Maguire
and Richards, 2014), types of biological interactions (see table 1.1.1), and the numerous species concepts (De
Queiroz, 2007; Boenigk et al., 2012). That is not to say biological quantisation is without utility or is a futile task.
Indeed, aslong as there is a clarity to the application, basis and limitations of these schema then they form a critical
(epistemological) framework upon which further research and communication can build (Boenigk et al., 2012).
However, care must be taken not to forget that they do not reflect reality and can inadvertently obscure the grey
areas (Leung and Poulin, 2008).
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dria or chloroplast where host and symbiont are essentially a single organism (Margulis, 1998;
Archibald, 2015). In the middle of such a spectrum you could find facultative endosymbioses
where each partner is capable of, and does, live aposymbiotically for extended life phases e.g.
Rhizobia soil bacteria and legume (Fabaceaea) plants (reduction of atmospheric N, to ammonia
(Hirsch, 1992) in exchange for host-derived carbon sources such as malate and succinate (Prell
and Poole, 2006)).

An endosymbiosis may be highly integrated in terms of metabolism, genome and life history
while still only being moderately interdependent (such as the facultative Rhizobia nitrogen fix-
ation which takes place in carefully controlled specialised root nodule structures (Crespi and
Frugier, 2008)). Therefore, a second dimension could be applied to our approximate classifi-
cation of endosymbiosis (fig. 1.1.1) representing the degree of host-endosymbiont integration.
Generally interdependence and integration correlate reasonably well due to the increased selec-
tive pressure to minimise lethal aberrant interactions that comes with interdependence. This can
be seen in the extreme of host-symbiont integration: that of the endosymbiotic organelles, which
are so highly integrated they were only conclusively identified as being endosymbiotic and not
part of the cell relatively recently (see (Archibald, 2014) for a brief historical overview).

Intracellular endosymbionts can be found inhabiting multiple host-compartments from nakedly
in the cytoplasm, to host-derived vacuolar compartments (often from exo- and endocytic sys-
tems) e.g. (Kodama and Fujishima, 2009) along with a range of host oraganelles including the
endoplasmic reticulum (Vogt, 1992), Golgi body (Cho et al., 2011), mitochondria (Sassera et al.,
2006), chloroplast (Wilcox, 1986) as well as the nucleus (Schulz and Horn, 2015). Owing to
the endosymbiotic origin of the chloroplast and mitochondria it becomes apparent that there
can be multiple “layers” of endosymbiosis. A primary endosymbiont is an endosymbiont that
is the direct endosymbiont of the host (e.g. the mitochondria to eukaryotes) whereas a sec-
ondary endosymbiont is the endosymbiont of an endosymbiont. The layers of endosymbioses
can get impressively deep, for example, bacterial endosymbionts have been identified within the
chloroplast stroma (cyanobacterial endosymbiont) of dinoflagellates (e.g. Woloszynskia pascheri
(Wilcox, 1986)) In turn, dinoflagellate plastids have been discovered that are likely the product
of tertiary endosymbioses (Gabrielsen et al., 2011) with higher-order events hypothesised in re-

lated groups (Stiller et al., 2014). Therefore, bacteria like this could be the endosymbiont of an
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Figure 1.1.1: Plot demonstrating a fragment of the diversity of endosymbioses and specif-
ically highlighting the possibility of a well integrated by facultative endosymbiosis. Host-
symbiont integration is a rough measure of how connected the host and symbiont have be-
come genomically, metabolomically and in terms of life history. Whereas, interdependence is
an approximate measure of the degree to which the relationship is necessary for life of organ-
isms involved. It should be noted that both axes can be highly reliant on specific ecological
and environmental context.

endosymbiont of an endosymbiont of an endosymbiont (quaternary) or higher.

With this considerable diversity it is perhaps not surprising that endosymbioses have been
discovered featuring partners from all three domains of cellular life. However, with the exception
of one extant Bacteria-Bacteria endosymbiosis (von Dohlen et al., 2001), typically the majority

of known endosymbioses feature a eukaryotic host* but can include endosymbionts from all 3

domains. For example:*

« Eukaryote-Archaea (Moissl-Eichinger and Huber, 2011)

*There are however many examples of mutualistic symbioses which are Bacteria-Bacteria (e.g. biofilms (Wat-
nick and Kolter, 2000)), Bacteria-Archaea (e.g. anaerobic methanotrophic archaea and sulphate-reducing bacteria
likely responsible for a large proportion of global methane consumption (Boetius et al., 2000; Knittel and Boetius,
2009) and SM1 euryarchaea/ Thiothrix sp. sulphide-oxidising bacteria (Henneberger et al., 2006; Wrede et al.,
2012)), and at least one example of Archaea-Archaea (Igniococcus hospitalis/Nanoarchaeum equitans (Huber et al.,
2002). Interestingly Igniococcus is the first identified case of an energised outer-membrane in double-membrane
bound archaea or bacteria, a significant finding for the development of theories of eukaryogenesis (Kiiper et al.,
2010))

SAlthough with all these examples it is important not to consider an endosymbiotic relationship in isolation
from other endosymbionts present in the same host. There are examples where facultative “secondary endosym-
bionts” are able to compensate for the loss of an obligate endosymbiont (Koga et al., 2003 ). Symbiont-symbiont
interactions have been found to play a role in determining which endosymbionts are capable of establishing them-
selves in a certain host and can even be capable of generating additional phenotypes e.g. the R-bodies of “killer”
Paramecium species which may be a product of an interaction between the Paramecium host, Caedibacter and a
bacteriophage (Schrallhammer and Schweikert, 2009).
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— Methanogenic archaea within various ciliates species (e.g. Plagioplya frontata) (Fenchel

and Finlay, 1992; Lange et al.,, 2005)

— Cenarchaeaum symbiosum within the tissues of marine sponges (Preston et al., 1996;

Wrede et al., 2012)
« Eukaryote-Bacteria

- Hartmannella and its intranuclear endosymbiont Candidatus Nucleicultrix amoebiphilia

(Schulz et al,, 2014)

- the most famous pairing of mitochondria and plastids
« Eukaryote-Eukaryote

— The fungi Diplodia mutila which aids herbivory resistance in the palm Iriartea del-
toidea in lowlight conditions but becomes pathogenicifhostis well lit (Alvarez Loayza

etal, 2011)
- Red alga derived plastids in brown algae (Dorrell and Smith, 2011)

- Numerous examples of algal mediated acquired phototrophy in ciliates (Johnson,

2011)

Endosymbiosis is the one of the most significant evolutionary processes in eukaryotic cell.
It offers a means for eukaryotes to benefit from the extensive metabolic diversity present in the
bacterial and archaeal pangenome, especially the only known forms of primary energy production

- photosynthesis and chemosynthesis (Wernegreen, 2012).

1.1.2 PLASTID ENDOSYMBIOSES

Most molecular evidence currently points towards a single primary endosymbiotic event between
a phagotrophic ancestral eukaryote (with mitochondria and developed endomembrane system
(Rockwell et al,, 2014)) and a cyanobacteria (blue-green algae) as giving rise to the Archaeplas-
tida (that is the green algae, red algae, glaucophytes and land plants (Green, 2011)) and their dou-
ble membrane bound plastids (Keeling, 2013). While this event is one of the must fundamental

events in the evolution of life, in and of itself, it is only capable of explaining a small proportion
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of the diversity of plastids across the eTOL (Keeling, 2013). Apart from one other putative pri-
mary endosymbiosis in Paulinella chromatophora® all other oxygenic phototrophs (as well as sev-
eral non-photosynthetic but plastid bearing pathogens (Sato, 2011)) have arisen by secondary or
higher order endosymbioses (Hoshina and Imamura, 2009).

Secondary endosymbioses are those in which another eukaryotic lineage has engulfed a pri-
mary plastid bearing algae before reducing and integrating them into a simulacrum of primary en-
dosymbiosis, occasionally serially (Keeling, 2010). This and subsequent loss of membranes leads
to the range of membrane layer numbers around plastids in various eukaryote lineages (Keeling,
2013). These secondary order plastid endosymbioses have occurred independently in divergent
eukaryote lineages all over the €ToL e.g. chloroarachniophytes and euglenids, and an unresolved
number of times in the set of cryptomonads, haptophytes, stramenopiles, dinoflagellates and api-
complexans (Keeling, 2013). Additionally, there are an uncertain number of higher order en-
dosymbioses in the dinoflagellates (Keeling, 2013).

Therefore, understanding the mechanisms and evolution of secondary photosynthetic en-
dosymbioses would provide important insight into the evolution of a considerable number of
eukaryotic lineages. Unfortunately, most extant examples feature endosymbioses within which
metabolic co-dependence has already become fixed. This means the potential mechanisms through
which the endosymbiosis may have originated are likely to be masked. Facultative systems such
as the green algal endosymbionts of Paramecium bursaria offer a potential avenue to investigate
secondary photosynthetic endosymbioses at an earlier stage i.e. before metabolic co-dependence
has become fixed (while acknowledging the impossibility of interrogating events that have already
occurred within the correct ecological context). Furthermore, as the ancestral protist involved
in the primary plastid endosymbiosis likely exhibited a similar life style to serially phagotrophic
Paramecium and would, initially at least, have also been mixotrophic (combining phagotrophy
with phototrophy via the newly acquired plastid (Rockwell et al., 2014)) the study of the Parame-
cium bursaria-green algal systems offer a potential insight into this early and fundamental stage of

eukaryote evolution.

°A euglyphid amoeba with photosynthetic chromatophores that are vertically inherited, synchronised to host
and bear a much stronger molecular and morphological resemblance to reduced cyanobacteria than the chloro-
plast of the Archaeplastida (Kies and Kremer, 1979; McFadden, 2014).
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1.2 PARAMECIUM BURSARIA

Paramecium are large (50-330 um) phagotrophic single-celled eukaryotes belonging to a geneti-
cally diverse (Prescott, 1994) sub-grouping of the alveolates known as the ciliates (see fig. 1.2.5).
They have been studied since the invention of microscopy (Gortz and Fokin, 2009) (first recorded
by a contemporary of van Leeuwenhoek, see fig. 1.2.1) and are some of the longest-standing
model unicellular eukaryotes. They have been used to study everything from mutagenesis and de-
velopmental genetics, to genomics rearrangement and epigenetics (McGrath etal., 2014). There-
fore, this system has a well-developed methodological (Sonneborn, 1970) and theoretical litera-
ture along with several available genomes (see fig. 1.2.3 for information on the genomes and their
relative relationship to P. bursaria).

Paramecium bursaria “the green Paramecium” is distinguished from most’other Paramecium
by the distinctive stable, heritable secondary photosynthetic endosymbiosis it maintains with
several species of Chlorella, Micractinium and Coccomyxa. Each 100-160 pm P. bursaria (Jennings,
1939) cell contains ~ 300 endosymbiotic algae maintained in individual perialgal vacuoles (PV)
around the cell cortex (Hoshina and Imamura, 2009).

Much like other ciliates, Paramecium are covered by cilia. These are minute hairlike biochemi-
cally heterogeneous organelles capable of sensing the environment and by beating in co-ordinated
metachronal waves (Funfak etal., 2015 ) provide cellular locomotion and. In the case of phagotrophic
ciliates like Paramecium, these cilia also play an important role forcing food bacteria towards
the oral groove (cytopharynx) where they can be phagocytosed (Hamel et al., 2011; Aubusson-
Fleury et al,, 2015). Paramecium is also capable of rapid locomotion via the expulsion of tri-
chocysts. These are defensive membrane-bound organelles containing a crystalline spike which
can be rapidly ejected into the environment on fusion of trichocyst membrane with plasma mem-

brane (Hamel et al., 2011).

"There is at least one other species, Paramecium chlorelligerum, that harbours a different green alga (Meyerella)
(Kreutz et al., 2012) and owing to the multiple origins of algal symbionts in P. bursaria (Hoshina and Imamura,
2009) and the general prevalence of mixotrophy in ciliates (Johnson, 2011) there are likely others yet to be dis-
covered.
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peu. Et par deux fois {"ay veu dans cetee mefime eau un animal dix fois plus grand
que ces autres qui avoit des pieds tout le long du corps, et eftoit de cetce forme,
L.es 4 ou 3 pieds du cofté A remuant

AT fans ceffe quand mefme I'animal eftoit
PR, A~ =~ . . . s les
r,_f) 1Y } en repos. Il courroic \th comme le

A B 2 it autres, ct fe tournoit et pirouertoit dans
'eau. Harefoecker m'affeure d'en avoir
crouve de la mefme efpece in femine corrupro.

Figure 1.2.1: A: Carving of Christiaan Huygens (1629-1695), the prominent Dutch Golden
Age mathematician and scientist and contemporary of Antoni van Leeuwenhoek, from a
medallion by Jean-Jacques Clérion 1679 (reproduced from (Huygens, 1899)). B: Likely the
first sketch of the micro-organism that we now know as Paramecium by Christiaan Huygens
in a letter (No. 2133, 11th of August 1678) to his father Constantijn Huygens. An approx-
imate translation of the accompanying text goes as follows “| have twice seen in this water
an animal 10 times as large as the others and with feet all over its body and a narrow form.
4 or 5 feet stirred even when the animal was at rest. It moves as fast as the others, turning
and spinning in the water. Hartfoecker thinks he may have discovered the same species in
‘semine corrupto’ (as a dried out husk?).” (reproduced from (Huygens, 1899)). C: 8 of the
10 volumes of the collected correspondences of Christian Huygens as prepared for the Dutch
Society of Sciences and published from 1888-1905.
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Figure 1.2.2: A: Composite fluorescence overlay of Paramecium bursaria CCAP 1660/12
captured on an Olympus IX73. B, D, and E: Greyscale light and chlorophyll fluorescence
images of P. bursaria CCAP 1660/12 captured on a Nikon Eclipse 80i. C: Composite overlay
of CCAP 1660/12 captured on an Olympus IX81 microscope.

All samples were fixed in paraformaldehyde at a concentration of 4 %.
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Tetrahymena thermophila

O ——— Paramecium bursaria

Paramecium caudatum

Paramecium multimicronucleatum

- Paramecium primaurelia

? I Paramecium sexaurelia

Paramecium aurelia

Paramecium octaurelia species complex

I Paramecium tredecaurelia

- Paramecium tetaurelia

Figure 1.2.3: Modified phylogeny redrawn from (Fokin et al., 2004; Aury et al., 2006; Mc-
Grath et al., 2014) showing the relative relations of ciliate species with genomic/transcrip-
tomic resources and hypothesised WGD event locations with a purple dot. Specifically 2
strains of Paramecium tetaurelia (Aury et al., 2006), assemblies for P. caudatum, P. multi-
micronucleatum, and P. aurelia complex species P. sexaurelia, P. primaurelia, P. octaurelia
and P. tredecaurelia on ParameciumDB (as of 05/03/2015) (Arnaiz and Sperling, 2011a).
As well as Tetrahymena thermophila (Eisen et al., 2006) and Oxytricha trifallax (Swart

et al., 2013).

Like other ciliates, including Tetrahymena, Paramecium deviates from the universal genetic
code. Canonical stop codons TAA and TAG have been reassigned to produce glutamine therefore
there is only one stop codon (TGA) but four glutamine codons (Salim et al., 2008).

Another defining feature of Paramecium, and ciliates in general, is a unique means of germline
sequestration from somatic function in the form of “nuclear dimorphism” (Jahn and Klobutcher,
2002). Specifically, they have two types of nuclei, expression optimised highly polyploid somatic
macronuclei (MAC) and largely silent diploid germline micronuclei (MIC) (Prescott, 1994).

During normal vegetative growth the MIC is densely packed with chromatin, is transcription-
ally silent and undergoes mitosis as standard. Meanwhile, the MAC reproduces by anon-standard
pinching process termed “amitosis”. This process appears to lack any mechanism to ensure equal
segregation of chromosomes such as spindle fibres (Chalker et al., 2013 ). On the other hand, dur-
ing sexual reproduction (in which two compatible P. bursaria exchange haploid MIC gametes gen-
erated by meosis) the MAC degrades and must be reconstituted entirely from the newly formed
heterozygous MIC (Jahn and Klobutcher, 2002) (see fig. 1.2.4). The exact number of MIC and
MAC varies widely by species and genus however, P. bursaria contains a single large MIC which
consists of 80 to several hundred chromosomes depending on the exact subspecies (Chen, 1940).

P, bursaria reaches sexual maturity after s0-100 fissions (Siegel and Larison, 1960) and will
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conjugate with another Paramecium bursaria cell of compatible mating type and exchange hap-
loid MIC gametes. Most Paramecium have a finite number of vegetative divisions and will die if
they do not sexually reproduce (Chalker et al,, 2013 ). Unlike all other studied Paramecium, P. bur-
saria does not only have 2 mating types and appears to have undergone gene duplication at two
unlinked mating type loci. Different P. bursaria isolates display 2, 4 and 8 mating types (Phadke
and Zufall, 2009) and form 4 or more mutually incompatible groups (Jennings, 1939). Sexually P.
bursaria appears to have synclonal inheritance - a strictly Mendelian inheritance contrary to the
more complex epigenetic patterns observed in other Paramecium species (that led to much of the
early work on epigenetics) (Siegel and Larison, 1960; Phadke and Zufall, 2009). During conjuga-
tion there is minimal cytoplasmic exchange (with no exchange of endosymbionts) (Wichterman,
1946). Contrary to other Paramecium species, which undergo autogamy after 75 rapid replica-
tions (Sung et al,, 2012) or 30-35 while starving (Berger, 1986), Paramecium bursaria has not
been found to naturally undergo autogamy (Siegel, 1963; Yanagi, 2004) but it can be induced by
treatment of methyl cellulose (Yanagi, 2004)

In Paramecium the haploid size and complexity of the MIC is greater than that of the MAC
as a result elimination of approximately 20-30% of DNA during reconstitution of the MAC from
the MIC. Eliminated sequences are known as internal eliminated sequences (IES) and are a mix-
ture of transposon-related repetitive sequences and nongenic single-copy sequences resulting in
a gene dense low-repeat MAC (Chalker et al,, 2013 ). Similarly, the MAC has a greater number
of shorter chromosomes than the MIC due to chromosomal fragmentation during DNA elimina-
tion by imprecise deletion of internal DNA segments followed by rejoining or telomere addition
(Chalker et al.,, 2013). This process involves 3 steps, as observed in P. tetaurelia, and features a

special class of small RNAs (scnRNAs) (Chalker et al., 2013):

« DNA amplification to high ploidy.

« DNA elimination pathway 1: accurate removal of short unique-copy elements (IES, in-
ternal eliminated sequences) that run through coding and non-coding sequences. This is
achieved using bounding 5-TA-3’ dinucleotides to target double-stranded breaks and sub-

sequent end-joining (Mayer and Forney, 1999; Bétermier, 2004.)

« DNA elimination pathway 2: imprecise removal of large DNA regions (often containing

transposable elements) in a manner similar to transposon silencing in other eukaryotes.
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This process likely involves short ncRNAs targeting heterochromatin formation via his-
tone methylation to induce fragmentation. This fragmentation is subsequently repaired

via the addition of new telomeres (Duret et al., 2008).

This process involves a special class of meiosis specific small RNAs (scnRNAs) which target as-
pects of DNA elimination (Chalker et al., 2013).

While the MIC appears to vary in size between subspecies of P. bursaria the MAC is roughly
the same size and generally contains 10-30 times the amount of DNA than the diploid MIC
(Cullis, 1972). Therefore, the MAC of P. bursaria is likely 20-60n (in contrast to the 8oon MAC
ploidy found in P. tetaurelia (Duret et al., 2008) ). The MAC genome is likely to be somewhere be-
tween 20 and 100Mb and contain somewhere between 18,000 and 40,000 genes based on the size
of the Tetrahymena (Eisen et al.,, 2006), P. tetaurelia (Aury et al., 2006), P. caudatum (McGrath
etal, 2014) and Oxytricha (Swart et al,, 2013) MAC genomes.

We can infer other likely features of the P. bursaria MAC genome from the P. tetaurelia se-
quencing project. Specifically, it is likely AT-rich (28% GC in P. tetaurelia), compact (78% coding
density in P. tetaurelia), mostly repeat free with small intergenic regions and many short introns
(e.g. 25bp IES elements) (Aury et al., 2006). There is also likely to be evidence of at least one
whole genome duplication (WGD) (an ancient WGD before the divergence of Tetrahymena and
Paramecium clades but not the two most recent WGD (see fig. 1.2.3) giving rise to the P. aurelia
complex) with a moderate level of conservation to gene synteny and duplicated gene retention
(weakly correlating with a gene’s GC%, expression level and functional class) (Aury et al., 2006;
McGrath et al,, 2014). P. bursaria is also likely to be have a high level of replication fidelity and
relatively low rate of base-substitution mutation, traits found in P. tetaurelia, as P. bursaria shares
ciliate specific modifications to the active sites of B-family polymerases a, {, and the proofread-
ing exonuclease of DNA polymerase ¢ believed to be adaptions to improve replication fidelity, a
necessary adaptation when maintaining a separate germline (Sung et al,, 201 2).

There is no established methodology in Paramecium to transform the MIC genome so the
only available reverse genetic methodology is that of gene knock-down with RNA interference
(RNAi) (Marker et al,, 2014). However, RNAi can be induced by one of two distinct but over-
lapping RNAI systems in P. tetaurelia (Marker et al., 2014). This is by microinjection of homol-

ogous transgenes (transgene-induced silencing) or by feeding Paramecium cells Escherichia coli
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Figure 1.2.4: Figure redrawn and modified from (Duret et al., 2008). During normal vege-
tative growth Paramecium bursaria (and other Paramecia) divide by binary fission with the
MAC elongating and “pinching” off in a process distinct from mitosis (known as amitosis)
while the MIC undergoes mitosis. As the cell pinches before cytokinesis an unknown septum
forms at the “neck”, this stops cytoplasmic streaming which induces the endosymbionts to
begin to divide. Cytokinesis then occurs largely simultaneously in host and endosymbionts
(Kadono et al., 2004; Takahashi et al., 2007). The sexual cycle involves conjugation of com-
patible mating types (taking around an hour and lasts 24-48 hours (Jennings, 1939)) which
triggers two-rounds of meiosis of the MIC with one product disintegrating after each division
so only a single haploid MIC remains. This undergoes mitosis to produce male and female
gametes. Male gametes are then reciprocally exchanged between mating cells and fuse with
the respective female gamete to create a syncaryon. Each syncaryon divides once and one
product disintegrates before undergoing two subsequent divisions. Two products differenti-
ate into MACs by programmatic reorganisation, conjugants split and a normal binary fission
occurs restoring normal 1 MAC and 1 MIC (Siegel, 1963)
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transformed to produce dsRNA corresponding to the target gene (Galvani and Sperling, 2002).
Furthermore, natural exogenous ssRNA in food bacteria of P. tetaurelia has been observed to pro-
duce low levels of silencing, therefore this mechanism is a likely a form of natural gene regulation
used by Paramecium (Carradec et al,, 2015). As P. bursaria shares the initial ancient WGD with
P tetaurelia (Aury et al., 2006) based on P. tetaurelia genes that are the product of this WGD it
currently or previously will have possessed: a pair of Dicer/Dicer-like proteins, 6 pairs of Piwi
genes and a single RARP (Marker et al,, 2014). Therefore, RNAI is likely available in P. bursaria
as a means of testing predictions generated through transcriptomic and genomic investigation.
Paramecium appears to be particularly competent for endosymbioses with an array of over
60 genetically diverse putative endosymbionts described (Gértz and Fokin, 2009). This is no
surprise as ciliates have been known to have bacterial (Gértz and Fokin, 2009), archaeal (Wrede
et al,, 2012) and eukaryotic (Kodama and Fujishima, 2009) endosymbionts. These endosym-
bionts range in degree from mutualist to parasitic and are cytoplastmic, endomicronucleic, en-
domacronucleic and/or perinuclear. As a serial phagotroph, Paramecium species are liable to in-
filtration by bacterial capable of escaping or resisting the phagosomal digestive process (Gortz,
1988). The Paramecium bursaria micronuclei frequently contains bacterial endosymbionts. The
closed nature of reproduction has been suggested as a reason why endonucleobioses are com-
mon in Paramecium species (Gortz and Fokin, 2009) Some endosymbionts exhibit high levels
of adaptation (no longer able to be found free-living and with evidence of the genome reduction
distinctive of endosymbiosis) (Gortz and Fokin, 2009). The most frequently identified bacterial
endosymbionts in German environmental samples are that of Holospora caryophila, Holospora
obtusa and Caedibacter caryophilus. Several of these endosymbionts have been shown to require

specific Paramecium genes for maintenance (Dohra et al., 1998).

1.3 PARAMECIUM BURSARIA - GREEN ALGAL ENDOSYMBIOSES

The Paramecium-green algal® endosymbioses are established when the algae is phagocytosed by

the serially phagotrophic Paramecium and is then able to escape the digestive vacuole. For this

8These include Chlorella, Micractinium and Coccomyxa species as mentioned above. However, historically only
Chlorella was described and as such most literature refers exclusively to Chlorella. Therefore, Chlorella is often best
considered as a stand-in term for any of the green algal endosymbionts of P. bursaria (see Chapter 3 for a detailed
review and analysis of this)
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Figure 1.2.5: A: Schematic of the current best estimate of the tree of life demonstrating
the 2D and 3D hypotheses, dashed lines indicate multiple potential branch location, arrowed
lines demonstrate known endosymbiotic events (based on work reviewed in (Gribaldo et al.,
2010)) B: Schematic of the current known eukaryotic portion of the tree of life (based on
work reviewed in (Burki, 2014; Adl et al., 2013)), C: Schematic of phylogeny of the ciliates
(based on work by (Bachvaroff et al., 2011) showing Oligohymenophorea containing Parame-
cium and Tetrahymena and sister group Spriotrichea containing Euplotes and Oxytricha.

D: Schematic of phylogeny of the green algae (based on work reviewed in (Leliaert et al.,
2012))
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escape to take place, the endosymbiont must initially resist acidification caused by acidosome
fusion with digestion vacuole. If the endosymbionts are able to resist this acidification they be-
gin, through an unknown mechanism, to ‘bud-oft” from the initial phagosome into a new vacuole.
This new perialgal vacuole (PV) is released into the cytoplasm and each PV contains an individ-
ual algal cell (Kodama and Fujishima, 2009) The PV appears resistant to lysosome fusion and fur-
ther digestive steps suggesting molecular modification of the vacuole membrane (Johnson, 2011)
These perialgal vacuoles then bind the host cortex and compete for attachment with host struc-
tures known as trichocysts (Kodama and Fujishima, 2012) in a region with low to no lysosome
activity (Kodama and Fujishima, 2009) This suggests the observed resistance to lysosome fusion
may be a by-product of localisation. As few as a single algal cell can infect the host (Weis and Ay-
ala, 1976) however, the majority of algae are digested especially non-competent strains (Kodama
et al,, 2007). Furthermore, it has been established that Chlorella strains are fairly host-specific.
For example, Summerer et al. (2007) showed that Chlorella isolated from other ciliates were able
to establish endosymbioses with P. bursaria however, those isolated from cnidarian Hydra were
not. This paper also demonstrated that P. bursaria favours its symbiotic partner over those iso-
lated from other ciliates when given the choice. This suggests specific adaptations have taken
place between host and endosymbiont (Summerer et al., 2007). Free-living Chlorella strains do
rarely establish endosymbioses with Paramecium (Siegel and Karakashian, 1959), however they
are generally only able to infect fewer Paramecium and establish much smaller endosymbiotic
populations within the host than the symbiont strains (Siegel and Karakashian, 1959).

Once established, the symbiosis appears to be mutually beneficial with an observed flux of
amino acids and CO, to the endosymbiont and oxygen and photosynthate (principally maltose)
to the host as a function of light levels (Karakashian, 1963 ). The extent of this endosymbiosis
is such that Chlorella is capable of supporting Paramecium in media without its typical bacterial
food-stocks and conversely the Paramecium is capable of supporting the phototrophic Chlorella
in the dark for ~2 weeks (or up to 51 endosymbiont cell divisions) suggesting considerable bi-
directional nutrient flux (Siegel and Larison, 1960; Karakashian, 1963). It should be noted that
forlonger periods in the dark or when a bacteria-free culture is used in the dark the host will digest
the endosymbionts (Parker, 1926). From an ecological perspective, this endosymbiosis can be

considered as a means of acquired phototrophy (or mixotrophy), a tactic believed to be advanta-
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Figure 1.3.1: Process by which some endosymbiont escape digestion and generate perialgal
valcuoles (PV). The digestive vacuole (DV) transitions through 8 distinct stages during PV
differentiation. Initially a spherical DV-I is formed from the cytopharynx. Within a minute
acidosomes fuse and differentiate this to the acidic DV-II. Primary lysosome fusion triggers
swelling and conversion to DV-III. At this stage endosymbiosis capable endosymbionts es-
cape digestion by an undefined mechanism. DV-III return to near neutral pH and are cat-
egorised into 3 categories based on them containing totally bleached, partially bleached or
unbleached algae. The DV-III condense into DV-IV following the same total, partial and
undigested categories. Finally, DV-IVb undergo budding into a mixture of single digested
Chlorella (SDC) and single green Chlorella (SGC). Finally, SGC translocate to the host cor-
tex and further differentiate into PV (Kodama and Fujishima, 2009). Figure redrawn and
modified from (Kodama and Fujishima, 2009 g0



geous for survival in patchy oligotrophic environments by providing fixed carbon to cover respira-
tion requirements (Putt, 1990). This is largely supported by studies, such as Karakashian (1963),
showing that with a sufficient concentration of bacterial feedstock in the media the growth rate
of aposymbiotic Paramecium (“bleached”) and Paramecium with Chlorella endosymbionts are
largely equal. This threshold is estimated to lie between 10° and 107 bacteria per ml. However,
as this is generally a much greater concentration than found in the natural environments of P.
bursaria the endosymbiosis offers a considerable adaptive advantage to the host (Karakashian,
1963 ). Temporary acquisition of phototrophy is estimated by some research (Raven, 1997) to
be less energetically costly than the permanent maintenance of plastids (via endosymbiosis or
kleptoplasty) within the host. Therefore, this indicates that this endosymbiosis likely provides

other host benefits beyond just the energetics of acquired phototrophy. These include:

- Exploitation of low oxygen environments by the host (as the photosynthesising endosym-

biont is capable of providing oxygen to the host (Reisser, 1980)).

« Photoprotection and protection against 257nm and 282nm UV radiation potentially via
endosymbiont pigmentation and localisation to shield host nuclei (Sommaruga and Son-
ntag, 2009; Summerer et al., 2009; Miwa, 2009). This is especially important as the AT-
rich Paramecium genome is likely prone to UV-damage via the formation of cyclobutane

thymine dimers (Sommaruga and Sonntag, 2009).

« Protection against predation (Berger, 1980). The exact mechanism by which this occurs
is unknown, however, it has been observed that mixotrophic ciliates are able to move in
rapid ‘jumping’ movements. This is hypothesised as being an energetically costly escape
reaction made possible by sugar-rich photosynthate mixotrophic ciliates gain from their
algal endosymbionts (Pérez et al., 1997). Intriguingly, this protection against predation
occurs despite endosymbiont displacement of trichocysts (defensive cellular structures)

for attachment to the ciliate cortex (Kodama and Fujishima, 2011).

« Protection against undesired endosymbionts and/or parasites. Algae in P. bursaria form
an antagonistic relationship with some bacterial endosymbionts but there is experimental
evidence that P. bursaria can only be infected by bacteria and yeasts after Chlorella is elim-

inated (Gortz, 1982). This is consistent with bacterial symbionts having been repeatedly
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identified as providing resistance to parasites in organisms such as the insects (Martinez

etal, 2014).

« Protection against chemical toxins, for example symbiotic Paramecium have a much higher
survival rate (96%) to 0.5 mM nickel chloride (NiCl,) than aposymbiotic Paramecium via

an undetermined mechanism (Miwa, 2009)

« Increased thermotolerance (tested at 42°C) (Miwa, 2009), again, by unknown mechanisms
but potentially related to the undefined means of perialgal vacuole attachment to the cell

cortex.

« Protection against excessive oxidative burden (potentially due to endosymbiont dismu-
tases and catalases) (Hortnagl and Sommaruga, 2007) and hydrogen peroxide (hypoth-
esised by Miwa as being due to the improved energetics of the symbiotic host) (Miwa,

2009).

In return, the endosymbiont also appears to gain several advantages including a generally

much increased level of photosynthetic activity (Sommaruga and Sonntag, 2009):
« CO, from the host (Parker, 1926)
« Nitrogen supply (Johnson, 2011).

« Amino acids including L-glutamine (likely an important nitrogen source) and L-arginine,

L-asparagine, L-serine, L-alanine and glycine (Kato and Imamura, 2009b).

« Host supplied mono- and divalent cations such as K™, Mg>*, and Ca>*. All of which have

key roles in photosynthesis (Kato and Imamura, 2009b).

« Protection against Paramecium bursaria — Chlorella Virus (PBCV) (Yashchenkoetal,, 2012)
a large isocahedral dsDNA, 330 kbp virus with 133-genes that lyses symbiotic Chlorella
when isolated from the host (Van Etten et al.,, 1983 ). This potentially occurs by preventing

contact between PBCV and the endosymbiont.

« Effective photo-accumulation and increased mobility (Niess et al., 1982a).
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This exchange of materials between host and endosymbiont is regulated by an effective biochem-
ical “bartering” system with numerous feedback cycles. For example, the release of endosym-
biont photosynthate is dependent on Ca*". This ion is provided by the host and also has a role
in the up-regulation of photosynthesis (as proxied by oxygen evolution) (Kato and Imamura,
2009b). Once photosynthate is released into the PV lumen endosymbiont H" -ATPases are acti-
vated which allow the generation of the H' gradient necessary for endosymbiont uptake of host-
provided amino acids via a set of amino acid-proton symporters (in the same manner as (Camoni
et al, 2006)) (Kato and Imamura, 2009b). This proton gradient will potentially lead to further
photosynthate release due to observed pH-dependence of this (Kato and Imamura, 2009b). As
we can see the more photosynthate supplied to the PV lumen, the greater the uptake of provided
nitrogen sources. Intriguingly, from experiments using cycloheximide to selectively interrupt en-
dosymbiont but not host protein synthesis it appears that the maltose exporter that is responsible
for export of photosynthate from the PV lumen into the host cytoplasm is endosymbiont derived
(Muscatine, 1967). However, unless photosynthesis is also inhibited (using DCMU) the build
up of photosynthate without exportation in the PV triggers the swelling of the vacuole up to 25x
its original size. This removes the vacuole from the region in which it is protected from lysosome
fusion and leads to the digestion of the endosymbiont (Kodama and Fujishima, 2009). So, here
we can see further regulation of the relationship — in which the endosymbiont is degraded if it
does not release photosynthate to the host. This also demonstrates the importance of cytoplas-
mic localisation and the conditions in the PV to the control of this relationship.

On top of this system of secretion, uptake and feedback there have also been several other
observed regulatory interactions between host and endosymbiont. The most apparent of these
are the synchronising of cell division and circadian rhythms between host and endosymbiont.
This integration is evidenced by the introduction of endosymbiotic Chlorella being sufficient to
recover a circadian rhythm in arrhythmic Paramecium mutants (Miwa, 2009). This regulation of
the timing of cell division for both members of the system appears well co-ordinated and takes
place in such a way that neither host or endosymbionts outgrow one another (Kadono etal., 2004;
Takahashi et al., 2007). The importance of regulation of endosymbiont distribution at host divi-
sion is evidenced in the only natural aposymbiotic P. bursaria mutant which has an impairment in

this mechanism and thus can’t maintain endosymbionts stably (Tonooka and Watanabe, 2002).
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1.4 CONCLUSION

In conclusion, understanding the mechanisms by which primary and secondary photosynthetic
endosymbioses have occurred is one of the most significant outstanding problems in understand-
ing the evolution of the eukaryotes. Paramecium bursaria and its endosymbiosis with green algae
such as Chlorella offers a useful system to investigate secondary photosynthetic endosymbioses
before metabolic co-dependence has become fixed. As both organisms seem highly prone to
forming endosymbiotic relationships with multiple other organisms as a serial host and serial
endosymbiont respectively it may be possible, by identifying the key molecular components of
their relationship, to understand what factors contribute to such prolific endosymbioses. Fur-
thermore, while there is considerable supporting literature and many established methodological
techniques for working on these organisms individually and in endosymbiosis there have been rel-
atively scant efforts using the latest -omics techniques and reverse genetics such as RNAi. Con-
sidering the historical role both organisms have played independently in our understanding of
endosymbiosis® it is perhaps apt that further insight may be gleaned by applying the latest mod-
ern techniques to interrogate their relationship.

Therefore, the main aims of this research are to assess the utility of P. bursaria and its algal
endosymbionts as models for the study of the evolution of endosymbiosis. Specifically, are they
metabolomically, transcriptomically and/or genomically tractable? Is this system amenable to
“single cell” analysis? Can M. reisseri be separated from its P. bursaria as has been observed in other
P. bursaria-Chlorella variabilis strains? Finally, can RNAI be used to test hypotheses generated

using these “omic” analyses?

“Margulis was strongly influenced and inspired by research conducted in organisms closely related to both
Paramecium bursaria and Micractinium reisseri. Specifically, the discovery of Tracey Sonneborn of non-mendelian
cytoplasmic inheritance in Paramecium bursaria (Sonneborn, 1950) and the multiple lines of evidence of the pres-
ence of DNA within the chloroplasts gleaned from several species of green algae related to Micractinium reisseri
(Spirogyra (Stocking and Gifford Jr., 1959), Chlamydomonas moewussii, and Chlorella ellipsoidea (Ris and Plaut,
1962)).
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Science is what we understand well enough to explain to a
computer. Art is everything else we do.

- Donald Knuth: foreword to A = B by Petvosek, Wilf and

Zeilberger

Methods

2.1  MICROBIOLOGY

2.1.1 STRAIN INFORMATION

During this project 3 Paramecium bursaria cultures have been used. These have been obtained
from the UK Culture Collection of Algae and Protozoa (CCAP) and the Japanese National BioRe-

source Project (NBRP). Specifically:

o CCAP 1660/12: Paramecium bursaria SW1 with Micractinium reisseri SW1-ZK (Hoshina

etal, 2010)

« CCAP 1660/13: Paramecium bursaria (unknown strain) with Coccomyxa CCAP 216/24"

"This is a mixed culture containing both CCAP 1660/ 12 strain with Micractinium and the Coccomyxa bearing
strain, the Coccomyxa endosymbiont has been further isolated in CCAP under the description CCAP 216/24
(pers. comm. Undine Achilles-Day CCAP)
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« NBRP Yad1g1N: Paramecium bursaria Yad1g with Chlorella variabilis 1N*

Both CCAP cultures (1660/12 and 1660/13) were isolated from the same pond in Cam-
bridge, UK (pers. comm. Undine Achilles-Day CCAP, Oban, Scotland) CCAP 1660/12 was
the principal culture and all genomic, transcriptomic and metabolomic analyses were conducted
using these cultures. Theoretically, these 3 cultures provide us with Paramecium bursaria strains
harbouring members of 3 of the 4 species of green algal Paramecium endosymbiont (see Chapter

3 for more details).

2.1.2 MEDIA AND CULTURE CONDITIONS

All P. bursaria cultures were maintained in New Cereal Leaf-Prescott Liquid (NCL) medium:

4.3gl™ CaCl,.2H,0
« 1.6gl71KCI

« 5sa1gl™' K,HPO,

. 2.8g1™" MgSO,.7H,0
« 1gl7* wheat bran

NCL medium is gravity filtered via GF/C paper and autoclaved before use (CCAP, 2012). Cul-
tures were stored in an incubator at 15 °C with a 12:12 light:dark cycle. The incubator was lit using
2 21 W 865 daylight fluorescent tubes, producing 2000 lumen each. Cultures were sub-cultured
approximately every 2 weeks using fresh NCL medium and were inspected using light microscopy
to monitor health. No bacteria was added to cultures used prior to “omic” analyses but otherwise
the medium was bacterised with Klebsiella pneumoniae SMC (strain donated by the Meyer Lab,

Ecole Normale Supérieure, Paris, France) the day before use.

2.2 Owmics

“omic” technologies are those aimed at globally characterising a class of biomolecules within a
specific biological sample (characterising the “-ome”). The major areas of this are genomics, tran-

scriptomics, metabolomics and proteomics. Genomics aims to characterise DNA and generally

2Yad1g1N host is mating type 1 and was created by mixing of isolated and cultured endosymbiont (Chlorella
variabilis Clone 1 (known as 1N strain))
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involves sequencing the genome, it is used to discover and describe genes (and non-coding DNA)
and, by comparison with other genomic datasets, their evolution. Similarly, transcriptomics is ori-
entated around the characterisation of the RNA present in a sample. This can include the canon-
ical messenger RNA (mRNA) transcripts but also other RNA elements i.e. non-coding RNA
(ncRNA) such as small interfering RNAs (siRNA) and micro RNAs (miRNA) and generally
involves sequencing the RNA fraction of interest. Transcriptomics can be used to catalogue tran-
scripts (and their variant splices), aid genome annotation, and/or assess transcriptional response
to a given condition or cellular state (Wang et al., 2009 ). Metabolomics seeks, instead, to identify
and quantify small biomolecules that make up the terminal and intermediate products of cellular
metabolism e.g. carbohydrates, alcohols, and amino acids. Finally, proteomics characterises the
proteins present in a sample. Typically, the metabolome and proteome are interrogated using var-
ious forms of mass-spectrometry. There are also a plethora of additional approaches which seek
to characterise different subsets of these biomolecules e.g. epigenomics (epigenetic modification
to DNA such as methylation and histone binding), gylcomics (characterisation of cellular saccha-
rides). Another frequently encountered term is that of “meta-...-omics”. “Meta-...-omics” is the
application of specific “omic” method to a biological sample containing multiple organisms. For
example, “metagenomics” has been used to investigate the cellular community composition of
marine micro-eukaryotes (Cuvelier et al., 2010) and “metatranscriptomics” has been used to anal-
yse the transcriptomes of the microbes present in the gut of metazoa (Perez-Cobas et al., 2013).
The utility of “omic” approaches is that they allow a researcher to characterise a high pro-
portion of a biological system’s function in a way that is faster, cheaper and requires less a priori
knowledge of the system than more targeted approaches. For example, in order to estimate the
abundance of all nRNA transcripts in a sample using specific approach such as gPCR would re-
quire sequence knowledge to design primers as well as an infeasible amount of reactions to acquire
a characterisation comparable to that obtainable by a transcriptomic approach such as RNAseq.
Additionally, due to being “non-targeted” (or rather less targeted) “omics” also removes one as-
pect of researched-induced bias caused by a conscious selection of molecule specific probes. By

not considering elements of a system in isolation like the classic methodologically reductionist®

*Epistemological reductionism: “explain all biology in terms of physics and chemistry” (Crick, 1966) i.e. biol-
ogy is applied chemistry which is applied physics which is applied maths. Ontological reductionism: a biological
system is only the sum total of its component molecules and their interactions. Methodological reductionism:
examination of simple components can be used to understand complex system (Fang and Casadevall, 2011)
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approaches “omics” can reveal complex systemic mechanisms/features (or at the extreme “emer-
gent properties”) that would otherwise have been missed (Fang and Casadevall, 2011). Experi-
mental design is very important when using of ““omic” platforms as the the number of biological
replicates tends to be far smaller than the number of parameters/metabolites/transcripts being
studied.

However, until relatively recently “omic” methodologies were restricted to specialised insti-
tutions and well characterised “model” organisms. While, Paramecium bursaria and green algae
such as Micractinium reisseri could be considered “model” organisms throughout the early days of
molecular biology, they are much less frequently studied in the genomics era (2000-today) par-
ticularly compared to organisms such as Arabidopsis thaliana and Saccharomyces cerevisiae. Fortu-
nately, due to the development and maturation of both technologies and databases the potential
for functional and adaptive analysis of non-model organisms using combined “omics” (i.e. using
genomics as a reference to guide subsequent transcriptomics) approaches e.g. (Mufioz Mérida
etal, 2013; Feldmesser et al., 2014) has recently been demonstrated. Additionally, there are two
other developments which make P. bursaria-M. reisseri (PbMr) amenable to “omic” analysis: de
novo transcriptomics, which dispense with the need to generate accurate genomes in the relatively
genomically intractable Paramecium e.g. (Kodama et al., 2014), and single-cell approaches which
allow fine-grained analysis of the Paramecium bursaria - green algal relationship on a cell-by-cell
basis.

It should be noted that care must be taken with “omics” approaches as they can easily become
purely descriptive, and at worst generate models that lack any biological relevance (Fang and
Casadevall, 2011). This concern holds for all systems-level approaches and has been frequently
raised and discussed in the context of genomics (Dougherty, 2008). Therefore, it is crucial to
supplement “omic” approaches with targeted methods in a way that compensates for the weak-
ness of each type of method. Specifically, the systems approach should be used to generate novel
and interesting hypotheses which can then be tested (and falsified) in isolation using reductionist
methods (Casadevall and Fang, 2008). For example, “omics” methods could be used to create a
model of inter-organism host-endosymbiont metabolism and targeted approaches such as RNAi
could then be used to test hypotheses generated by this model i.e. testing that a particular trans-

porter protein is responsible for the transfer of metabolites by knocking out that transporter and
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observing the resultant phenotype: is the relationship perturbed in a predictable manner?

2.2.1 GENOMICS AND TRANSCRIPTOMICS
2.2.1.1 DNA SEQUENCING

In the majority of cases, genomics and transcriptomics are both synonymous with the sequenc-
ing nucleic acids. Earlier approaches, based upon the fluorescent marking of the hybridisation
of DNA and/or RNA to arrays of short complementary probes e.g. genomic tiling arrays and
the transcriptome microarrays (Mockler and Ecker, 2005 ), are of more limited utility. Relative
to sequencing-based approaches these methods require relatively more prior knowledge of the
organism and require a custom array to be designed for any novel system. Additionally, while mi-
croarrays can determine relative expression levels of transcripts by the comparison of the fluores-
cence intensity at given complementary probe(s) the continuous nature of this output, difficulty
distinguishing alternative isoforms and more limited dynamic range (combined with previously
mentioned limitations) has meant the sequencing of cellular transcripts (RNAseq) has largely
supplanted microarrays (Wang et al., 2009). However, both SNP tiling arrays and microarrays
do have the advantage of throughput and ease of analysis in situations where the host organism
is well known and suitable arrays have already been designed and evaluated. For this reason they
are still frequently encountered in specialist area of medical diagnostics.

While it is possible to directly sequence RNA transcripts (Ozsolak et al., 2009) most ap-
proaches first utilise a reverse transcription (RT) step to convert transcripts to cDNA. As ribo-
somal RNA makes up a sizeable proportion of RNA in the cell it is often necessary to enrich
or select the RNA fraction of choice in order to minimise wasted effort when sequencing (Wil-
helm and Landry, 2009). For eukaryotic mRNA enrichment this can be easily achieved by using
poly-T primers during RT which selectively bind to the poly-adenylated tail of these messenger
transcripts. However, for bacterial/archaeal work and transcriptomic analyses focusing on non-
poly-adenylated transcripts such as ncRNAs/siRNAs/miRNAs etc. ribosomal depletion is used
(O’Neil etal.,, 2013). This is a process by which ribosomal probes are attached to magnetic beads.
Ribosomal RNAs bind to these probes and the magnetic beads can be used to partition the ma-
jority of ribosomal sequences away from the other RNA (O’Neil et al,, 2013 ). This means that

transcripts can be sequenced using the same methods and platforms as any other DNA sample
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with analysis only diverging against post-sequencing. It should be noted that there are potential
disadvantages to this reverse transcription step and it can potentially generate artefacts and biases
in the analysis (as well as placing limitations on the quality and quantity of input RNA) (Ozsolak
and Milos, 2011) however, the advantages of the more developed DNA sequencing technology
outweighs these disadvantages.

These DNA sequencing technologies can largely be divided into 3 technological eras with
today (2015) broadly at the transition between 2nd and 3rd generations.

1st generation (also known as Sanger) sequencing technology originated in 1970s with the
work of Sanger & Coulson (Sanger and Coulson, 1975; Sanger et al., 1977a,b) which developed
sequence determination via the principal of chain termination during synthesis and subsequent
determination of relative fragment sizes. Briefly, by having 4 separate reactions in which DNA
synthesis terminates on the incorporation of dideoxy nucleotides (ddNTP) corresponding to
each of the 4 principal DNA bases (i.e. ddATP, ddGTP etc.) you can generate a series of DNA
fragments of various sizes. Size fraction separation of these fragments via methods such as gel
electrophoresis means the DNA sequence can be easily read from the fragment size distribution
across the 4 ddNTP reactions (Sanger etal., 1977b). This technique was used to sequence the first
DNA genome (bacteriophage X174 (Sanger etal., 19772a)). The methodology was subsequently
improved by use of fluorescently labelled ddNTPs by Leroy Hood, massively simplifying automa-
tion of the process (Smith et al., 1985, 1986). Further improvements followed throughout the
1990s and early 2000s such as capillary electrophoresis and other general throughput and length
enhancements (Bonetta, 2006). Transcriptomic analysis was possible using Sanger sequencing
by generating clone libraries from partial or complete cDNA and randomly sequencing clones
(Adams et al., 1991; Gerhard et al., 2004). However, while this did allow resolution of different
isoforms and could be used to aid annotation (Adams et al., 1991) it was not possible to investi-
gate relative expression levels beyond a broad identification of highly expressed transcripts based
on the proportion of the cDNA/EST library they made up. Sanger sequencing’s main utility lies
in high quality short fragment (300-1000 bp) sequencing to determine or confirm the sequence
of specific DNA fragments such as vectors or PCR products (Bonetta, 2006; Tsiatis et al.,, 2010).

2nd generation sequencing emerged commercially in 2005 with the work of both George

Church and 454 Life Sciences (Margulies et al., 2005 ) and featured reduced individual reaction
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Library preparation
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Figure 2.2.1: A brief overview of library preparation for lllumina modified from (Mardis,
2008) and Illumina TruSeq kit documentation. DNA is fragmented before various steps (end-
repair and poly-adenylation) to facilitate attachment of adapters. Finally, fragments with
adaptors are size-selected according to the specification of that particular sequencing run.

volumes, greater parallelisation (and so higher throughput), cell-free preparation without the
need for time-consuming cloning of DNA fragments into bacterial vectors to generate clonal tem-
plates for sequencing, and direct sequencing detection obviating the need for size fractionation
(Jaszczyszyn etal,, 2014). These technologies generate huge amounts (on the order of 10° —10°bp
of relatively short (on the order of 10* — 10°bp) DNA sequences (reads) randomly sampled from
the input (c)DNA.

Commercially available 2nd generation platforms include 454’s GSLFLX and GSJunior (now
Roche), Ion Torrent’s (now Life Technologies) Personal Genome Machine, Applied Biosystem’s
(now Life Technologies) SOLiD and Illumina’s (formerly Solexa) HiSeq, MiSeq and older Gene
Analyzer IT (Nederbragt, 2013).

Although these platforms use a range of different implementations and tend to exhibit vari-
ous different trade-offs (mainly in terms of number of reads and their respective lengths) they all

largely follow the same basic process (Shendure and Ji, 2008):

1. Library generation: Randomly fragmenting input DNA into short fragments of a specific
size followed by ligation of adapter sequences with some platforms allowing development
of “paired-end” or “mate-pair” libraries in which each end of a fragment is sequenced sepa-

rated with a known size unsequenced fragment aiding subsequent assembly (see fig. 2.2.1)
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2. Clonal amplification: Generation of clonally identical spatially distinct clusters of DNA
mainly via emulsion PCR (Dressman et al., 2003) (SOLID, Ion Torrent, 454) or bridge

PCR (Adessi et al., 2000; Fedurco et al,, 2006) (Illumina) (see fig. 2.2.2)

3. Sequencing-by-synthesis: In which a complementary DNA strand is generated base by
base via sequentially flooding and clearing a chamber with each ANTP and a polymerase
(or ligase in the case of SOLiD). On incorporation of a base into a cluster a detectable
signal is released such as emission of certain wavelengths of light detectable using optics

(e.g. lllumina, 454, SOLID) or release of hydrogen ion (e.g. Ion Torrent).

The explosion in sequencing throughput on 2nd-generation platforms has driven a massive
decrease in per-base sequencing cost and the subsequent expansions in the amount of available
data (e.g. the US National Center for Biotechnology’s (NCBI) short-read archive (SRA)) has
made both genomic and RNAseq analysis and annotation easier and more effective.

While 2nd generation sequencing has driven down per-base sequencing costs, the cost of
library preparation has fallen more slowly (Blainey, 2013). For this reason, combined with the
higher throughput, it has become common to multiplex difference samples during sequencing
runs. Multiple distinct samples can be be sequenced in the same reaction (e.g. flowcell lane for
[lumina platforms) by adding an indexed tags during library preparation. These tags can then be
used to partition the reads back to their original separate samples after sequencing.

The current de facto standard in 2nd generation sequencing is that of the bridge amplification
based (Shendure and Ji, 2008) Illumina platforms (Regalado, 2014) due to relatively low error
rate (< 0.1% (Glenn, 2011)), very high throughput (e.g. HiSeq2500 generates up to 400M 125 bp
reads per run (1 Tbp of data) (Nederbragt, 2013 )) and the lowest cost per Mbp (< $0.04 (Glenn,
2011)).

Finally, 3rd generation technologies are generally known as single-molecule sequencing. These
platforms sequence individual DNA (or RNA molecules (Ozsolak et al.,, 2009) ) without a poten-
tially bias generating and error-prone amplification step. The first 3rd generation platform was
that of the now defunct Helicos Bioscience’s Helicoscope (Harris et al., 2008) based on break-
throughs in the resolution of fluoresence visualiation using paired FRET methods (Braslavsky

etal, 2003). Currently there is only one publically available platform: Pacific Biosciences (PacBio)
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Paired-End Illumina Sequencing

1. Denature fragments, adapters bind to complementary
oligos on flowcell surface undergo second strand synthesis
and wash away of original read

2. Bridge amplification
(Unbound adapters not shown)

. (-

3. Denature and_ repeat bridge amplification 4. Cleave one type of sequencing adapter
to gain clonal clusters leaving clonal fragments in the same orientation

. 6.After read 1 has completed, wash away synthesised
5. Sequence-by-synthesis of read 1 reads and leave templates

8. Cleave other type of sequencing adapter
and sequence-by-synthesis read 2 with fragments in
opposite orientation

Figure 2.2.2: A brief overview of paired end sequencing in an lllumina flowcell after library
preparation, derived from (Mardis, 2008) and Illumina. Briefly, prepared sequences with
adapters are ligated to the flowcell and undergone bridge amplification to generate clonal
clusters. These clusters are treated to ensure all fragments are in the same orientation before
iterative sequencing-by-synthesis stages and washes. Finally, the clusters are regenerated and
cleaved to sequence the opposite orientation (i.e. read 2 in paired end sequencing).

7. Another round of bridge amplification
to recreate mixed orientation clonal clusters
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RS platform. PacBio operates on a similar principal of sequencing-by-synthesis as the 2nd gen-
eration platforms but uses fixed polymerases at the base of specially wave-guide structures allow-
ing the detection of fluorescence from a single reaction instead of many parallel reactions in a
clonal cluster. This produces few (compared to 2nd generation platforms) long (20kb and longer)
reads but has a high cost and high error rate (14%) (Jaszczyszyn et al., 2014) Another platform,
currently in testing, Oxford Nanopore’s Minlon, reads individual strands of DNA through an ar-
ray of pore proteins and determines the sequence at each pore based on the physical properties
(impedance) of a particular set of bases.

Unfortunately, partly as an element of their relatively nascence and partly due to the poorer
signal:noise of single molecule approaches compared to analysing large batches of identical DNA
sequences, 3rd generation technologies have a relatively high error rate (Quail et al., 2012). There-
fore, they are generally inadequate for eukaryotic assembly tasks in and of themselves (although
that is changing as the platforms mature (VanBuren et al,, 2015)). Where they have shown great
utility is in conjunction with 2nd generation datasets as a scaffolding tool i.e. producing long
noisy reads upon which more accurate but shorter reads can be assembled (Zhou et al., 2009).
3rd generation platforms are also highly useful in the resolution of structural variation and ge-
nomic repeats (Pendleton et al,, 2015).

Therefore, all genomic and transcriptomic sequencing in this thesis has been performed us-
ing the 2nd generation Illumina GAII and HiSeq platforms due to their relative maturity, high-
throughput, relatively accurate paired-end output making it currently the most amenable plat-
form to effectively use de novo genomic and transcriptomics approaches. Additionally, Sanger
sequencing has been used when accurate targeted sequencing was called for, such as investigat-

ing the taxonomic distribution of Paramecium green algal endosymbionts (see Chapter 3).

2.2.1.2 BASE-CALLING

All sequencing platforms involve base-calling procedures in which the continuous primary se-
quencing data e.g. fluorescence with Illumina or current with IonTorrent is converted into a dis-
crete nucleotide sequence. This is typically achieved using parametric modelling and machine
learning approaches optimised by the platform manufacturer (Ledergerber and Dessimoz, 2011).
Researchers using mature platforms such as Illumina typically rely on the default base-calling.

However, there is much active research in improving these systems particularly for SMRT se-
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quencing. These include various advanced signal processing and machine learning methods such
as Conditional Random Fields (CRF) and Recursive Neural Networks (RNN).

The major 2nd and 3rd generation base-calling procedures output a FastQ formatted file.
These are files containing the sequence of a read and a per-base quality score known as a Q score.

These scores (Q) are calculated as a logarithmic relation to the base-called error probability (p)

Q = —1ologiop
and conversely:
Q = lo%oq

Therefore Q = 30 corresponds to 99.9% base call accuracy

2.2.1.3 READ PRE-PROCESSING

Before assembly, there are several stages of read pre-processing that generally takes place for both

genomic and transcriptomic studies. Typically, there are 4 key steps:

Library quality control and contamination screening

« Trimming sequencing adapters and low probability reads
« Error corrections

« Digital normalisation

Library quality control (QC) and contamination screening is frequently done by as part of the
standard sequencing facility diagnostics due to their utility in identifying technical problems.
Problems with library preparation and sequencing can be detected by analysis of various met-
rics such as the distribution of per-base quality scores across sequences, distribution of low qual-
ity base reads across the flowcell and the presence of massively over-represented k-mers and se-
quences in the raw libraries. One of the most commonly used quality control tool is FastQC
(Andrews, 2015) which performs tests and visualises these metrics and highlights aberrant val-
ues.

Identification of potential library problems can be used to attempt to ameliorate these prob-

lems, for example, if there are consistently low quality bases at the end of the reads then a harsher 3
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trimming step can be used. Alternatively, libraries with many problems may require re-sequencing.
Contamination screening is also a highly important part of sequencing, especially for single cell
approaches (see Chapter 4 for an in-depth analysis) as contaminant reads from non-target organ-
isms can greatly complicate analysis and assembly of data.

While second-generation sequencing technologies have massively increased throughput on
an individual read basis they exhibit a much higher error rate than earlier Sanger approaches with
lumina HiSeq reads showing 0.5 — 2.5% error rate (Kelley et al,, 2010). Typically, llumina
errors are substitution errors (Yang et al.,, 2013a) and are distributed non-randomly across the
read. The error rate increases from 5’ to the 3’ end of a given read (Liu et al,, 2012). The presence
of sequence error does lead to assembly error (Macmanes and Eisen, 2013 ). Sequencing error
greatly complicates assembly graphs and increases the computational demands of graph traversal.
Therefore, before assembly this error must be minimised. This generally involves two processes,
read trimming and explicit error correction.

Read trimming serves two roles: the removal of contaminating sequencing adapters that
may have infiltrated the library during sequencing, and the removal of low quality sequencing
data. Low quality sequence data is removed as these reads/parts of reads are more likely to con-
tain errors. There are many available tools for read-trimming e.g. Trimmomatic (Bolger et al,,
2014), Sickle (Joshi and Fass, 2015), FASTX-toolkit (Gordon and Hannon, 2010), PRINSEQ_
(Schmieder and Edwards, 2011) and cutadapt (Martin, 2011). These generally fall into two algo-
rithmic groups: running-sum based approaches e.g. Cutadapt and ERNE-FILTER and window-
based e.g. FASTX, PRINSEQ, Sickle and Trimmomatic (Del Fabbro etal., 2013). Briefly, running-

sum approaches involve the calculation of a score for each base, i, from 3" to 5’:

s(i) = s(i +1) + ¢ (i) = Quin

where ¢ is a function returning the Q score for that base and Q,;, is the minimum defined quality
threshold. These s scores are then used to determine the start of the trimming point. Alternatively,
window-based approaches generally calculate the average quality score across a sliding-window
of n bases. If the score in a given window drops below the minimum average quality it is then
trimmed.

Currently, there is no clear answer to the question ‘which is the best trimming algorithm?’
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This is due to many dataset-specific effects as well parameter-dependence (Del Fabbro etal,, 2013).
In general, most trimming tools have been found to largely perform equivalently across multiple
RNAseq and DNAseq datasets and applications (see ‘File S2” in Del Fabbro et al. (2013)). Due
to its ease of use and maintenance of paired-read correspondence, Trimmomatic has been the
primarily used trimming tool throughout this thesis.

Traditionally, most projects use conservative trims which only accept reads and bases above a
high threshold such as an average score of Q30 e.g. (Looso et al., 2013). However, recently, there
have been empirical studies suggesting the optimal approach is permissive trimming (e.g. g > 2)
followed by explicit error correction (MacManes, 2014).

Error correction of Illumina sequencing reads has been acknowledged as an increasingly im-
portant step in the creation of both high quality genomic (Schatz et al,, 2012 ) and transcriptomic
(Macmanes and Eisen, 2013 ) assemblies. This pre-process step generally operates on the assump-
tion that errors are infrequent and random. An error at a given position can thus be identified and
corrected by comparison to the sequences of the other reads which are sample from the same re-
gion (Yang et al,, 2013b). Specifically, if the majority of other reads feature the same sequence
but a single read has a single substitution this is more likely to be product of sequencing error than
biological diversity.

This is most typically achieved using probabilistic approaches after decomposition of reads
into k sized substrings (known as k-mers). These k-mers are then analysed via spectral tech-
niques and the construction of hamming graphs (e.g. (Nikolenko et al,, 2013)) to identify related
low-abundance and likely erroneous k-mers. Some approaches will also integrate sequence align-
ment and quality score features. However, k-mer approaches are generally more computationally
efficient and more effective at removing sequencing error than quality score based approaches
(Zhang et al,, 2014). See (Molnar and Ilie, 2014) for a review of error correction algorithms.

Error correction is more difficult for transcriptomic datasets (and single cell data) because
the assumption of uniform coverage is not true for these datatypes (Macmanes, 2015 ). Therefore,
correction of these datasets generally relies on explicitly probabilistic approaches that avoid this
assumption by analysing relative abundances and methods such as bayesian subclustering of the
hamming graphs (Nikolenko et al., 2013).

The final form of read-processing is arguably a variant of error correction, it is known as digital
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normalisation (Brown et al,, 2012). This simply involves the elimination of redundant read data
in a given library. As short-read sequencing involves the random sampling of the transcriptome
or genome there is a high level of redundant sequencing where many reads are derived from the
same template. The number of reads that map to a given portion of a template is known as the
coverage. While the high levels of coverage are necessary for accurate assembly reconstruction
it generates a computational burden and increases the problem of sequencing error. Therefore,
by normalising coverage by progressively filtering out the most abundant reads it is possible to
minimise sampling variation and generate much smaller libraries that still contain nearly the same
amount of information (Brown et al., 2012). This means the computational demands of assembly

are much lower and thus it is easier to tune assembly parameters.

2.2.1.4 ASSEMBLY

Assembly is the process by which reads are combined to recapitulate the transcripts or chromo-
somes they were sampled from. There are two main approaches to both genome and transcrip-
tome assembly - referenced and de novo. A referenced assembly consists of the alignment of
processed reads to a prior assembly or reference sequence using specialised short-read aligners
such as Bowtie or BWA (Langmead and Salzberg, 2012). Unfortunately, these are reliant on the
availability of pre-existing genomic or transcriptomic resources for the organisms being analysed.
However, even if the reference is divergent, referenced assembly may still produce a higher quality
assembly than de novo methods alone (Vijay et al,, 2013). For referenced transcriptome assembly
there are multiple tools that conduct post-processing of mapping data to account for features of
transcripts such as alternative isoforms and spliced out intronic sequences (Kim et al., 2013).

On the other hand, de novo assembly algorithms don’t require a prior reference sequence and
form two main groups: Overlap-Layout-Consensus (OLC) methods and de Bruijn graph (dBG)
methods.

OLC are conceptually relatively simple, a graph is constructed based on the overlap of se-
quencing reads determined using standard pair-wise alignment algorithms. Each graph vertex
represents a read and an edge connecting a pair of vertices indicates overlap between those reads.
Therefore, assembly is a process of finding a hamiltonian path (HPP) (i.e. the path that visits each
vertex exactly once) across the OLC graph. Unfortunately, calculating overlaps is computation-

ally demanding and hamiltonian paths are difficult to discover (NP-complete) (Karp, 1972).
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Alternatively, de Bruijn graph assembly involves the decomposition of reads into k-mer sets.
These k-mers are then assembled into graphs based on k — 1 overlaps with other k-mers. However,
in dBGs the vertices represent the k — 1 overlaps with the k-mers themselves forming the edges.
This simplifies the problem of assembling contigs from finding hamiltonian cycles in the graph
(NP-complete complexity) to that of the eulerian cycle (i.e. visit each edge once) problem (EPP)
(P complexity). This is a computationally much simpler problem as it has far fewer degrees of
freedom. Thisis because all edges (and therefore all non-disjoint vertices) must be visited whereas
in the HPP not all edges will necessarily be used. Furthermore, the existence of solution to the
EPP within a graph (or subgraph) can be easily determined by observing whether that a) the
graph is connected and b) the order of only < 2 vertices is odd (i.e. an even number of edges
connected to them). This reduced computational complexity therefore allows assembly of much
larger datasets (Compeau et al,, 2011).

Generally OLC assembly is limited by a requirement for fast and accurate overlap calculations
and alignment whereas the de Bruijn approaches requires robust error correction (Palmer et al.,
2010). As de Bruijn graph generation relies on exact k — 1 matches errors exponentially increase
the number of possible graph traversal paths. More traversal paths means greater graph complex-
ity and thus increased risk of error as well as higher computational demands (Pop, 2009). Some
modern assemblers utilise paired-end read information directly in the generation of these graphs
(Bankevich et al,, 2012), however, most assemblers just use this information to post-process as-
sembled contigs using various heuristic methods.

No one assembler will produce the optimal assembly for every dataset, indeed often the best
assemblies are generated by combining multiple assemblies. Therefore, for all genomic and tran-

scriptomic analyses in this thesis I will use multiple assembly approaches and implementations.

2.2.1.5 THE PROBLEM WITH PLOIDY

One important complication in the assembly of eukaryotic genomes relative to bacterial or ar-
chaeal sources is the issue of highly heterozygous polyploid genomes. This is problematic as the
de Bruijn graphs constructed during assembly rapidly increase in complexity when reads from het-
erozygous samples become incorporated (Kajitani et al., 2014a). This is because k-mers derived
from heterozygous regions of homologous chromosomes will partition the assembly graph into

bubbles that cannot be easily or accurately resolved by most assemblers expecting only limited
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structural variation during assembly. Previously, attempts to work around this included inbreed-
ing to generate homozygous lines or fosmid based approaches.

Specialised genome assemblers have been produced to address this problem e.g. Platanus. By
using a range of approaches such as k-mer autoextension, merging haplotypes at both contig as-
sembly and scaffolding steps, and incorporation of various heuristics in bubble resolution these as-
semblers have performed reasonable well on both highly and lowly heterozygous genomes (Brad-
nam et al., 2013; Kajitani et al,, 2014b).

Likewise, transcriptome assembly complexity rapidly increases with the number of alleles ex-
pected per gene, ploidy, heterozygosity, presence of complex gene families and alternative splic-
ing. This is particularly problematic in the PbMr system owing to the massive ploidy of the host
Paramecium bursaria and the numerous whole genome duplications in its relatively recent evolu-
tionary history (McGrath et al,, 2014). This also explains the difficulties in using sister species, as
the most sequenced Paramecium genus species are the aurelia complex which have undergone 2

WGD since divergence with P. bursaria (McGrath et al,, 2014).

2.3 MACHINE LEARNING AND STATISTICAL PATTERN RECOGNITION

Machine learning is a field of computer science devoted to the challenge of developing and apply-
ing algorithms capable of automatically inferring and utilising patterns in data (Murphy, 2012).
A commonly used formal definition of machine learning: “A computer is said to learn from ex-
perience e with respect to some class of tasks t and performance measure p, if its performance
at tasks t, as measured by p, improves with experience e.” (Mitchell, 1997). Machine learning
encompasses techniques and methods from various areas including statistics, optimisation/con-
trol engineering, neuroscience and artificial intelligence. Applications range in complexity from
simple linear regression to deep convolutional neural networks (CNN) with millions of free pa-
rameters running on dedicated super-computers (Wu et al.,, 2015) which are capable of beating
human-performance on complex image classification tasks e.g. IMAGENET (Russakovsky et al.,
2014; He et al,, 2015).

Typically, we seek to set the parameters (0) of a function in such a way that another prop-
erty is minimised. For example, in linear regression the aim is to find parameters of a straight line

he(x) = 0x (assuming x, = 1and 6, is the intercept) which minimise the distance between the
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line and the dependent variable (y). In this case x and y are most commonly vectors, however,
more complicated regression tasks will involve higher order tensors. The distance/error is calcu-

lated using something known as the cost function e.g. for the sum of squares distance measure:
1 — 5
J(O) = tm > (hole) —3)

(where m is the number of «, y pairs in the dataset for linear regression). Most algorithms will
seek to minimise the value of this cost function J(0) with respect to the parameters of the original
function hg(x). Typically, this is achieved using a variety of algorithmic optimisation techniques.
The most prevalent of these are gradient descent based methods in which the value of 0 is modi-
fied in the direction of the gradient of the cost function (determined using the partial derivative
of ] with respect to 0: %).

In an ideal world, the best machine learning model trained using our data will generalise well
for novel data generated from the same underlying process which generated the training data.
This is known as generalisability and it plays into the concept of ‘fit. A model that minimises
its particular cost function on the training dataset has been fitted to that dataset, however, it is
possible for the model to fit the training data in such a way that it has low error on the training
data but performs incredibly poorly when applied to new data from the same process. This is
typically the case when a model has overfit the data.

The classic example of this is fitting a line to a set of points using a high degree polynomial
(fig. 2.3.1) . This polynomial will perfectly pass through all the points but is likely to be a worse
predictor for the value of some new data than a much simpler model which might appear to have
a worse fit to the original training data. Likewise, a model that is misspecified or cannot fit the
training data well e.g. the training data follows a non-linear distribution but the model is linear, is
known as underfitted. Underfitted models will perform poorly on both the training and test data.

As constantly assessing generalisability using the test data essentially makes this part of the
training data (and thus will lead to overfitting) almost all machine learning analyses use the prin-
cipal of cross-validation. Cross-validation is the partitioning of the training dataset to create a
validation dataset which can be used as a proxy test set.

No single model will perform best for all tasks (to paraphrase and simplify Wolpert and Mc-

Creedy’s “No Free Lunch Theorem” (Wolpert, 1996) ), there are no shortcuts in machine learning
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(and many other areas) or optimisation. Therefore, testing different models (and hyperparame-
ter values) using cross-validation is key to generating a useful model. Another important way to
prevent overfitting is to introduce regularisation in the cost function i.e. a term which penalises

higher model complexity.

Dataset
.
20 %
*° 0o
o Il Training Data
y R ®e [ Test/Cross-Validation Data
¢ © °- [[_] High bias (underfitting) model
o : K [l High variance (overfitting) model
® o
o - ©
) [
‘o o
X
Learning Curves
High bias High variance

Error Error

Training set size Training set size

Figure 2.3.1: Plot showing a high bias (underfit) model in yellow and a high variance (over-
fit) model in red. Below are learning curves corresponding to each of these respectively.
Learning curves show the effect of different training set sizes on the training and test error
of misspecified models. Overfitted models show a large gap between test and training errors,
they fit to the training data well but don't generalise to new data (i.e. test data). Under-
fitted models show a very high training error and little difference between test and training
data as the model is too simple to fit the training data at all.

Machine learning is typically divided into 2 main subsets depending on the nature of the
dataset involved: supervised learning (e.g. classification and regression) and unsupervised learn-
ing (e.g. clustering, density estimation and dimensionality reduction). There are also approaches

that blend features of both supervised and unsupervised learning known as semi-supervised learn-
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ing as well as an alternative idea known as reinforcement learning built on the premise of the

psychology of behaviour and the indirect reward of trial and error approaches (Bishop, 2006).

2.3.1 SUPERVISED LEARNING

In supervised (also referred to as predictive) learning the principal aim is to learn a mapping be-
tween inputs/features x and outputs/response y from a set of inputs and their corresponding
expected output. This is known as the training setie. D = (x;,;) Vi € nwhere n is the car-
dinality (size) of the training set (Murphy, 2012). A supervised learning algorithm thus seeks to
approximate y = f(x) where fis an unknown function. This estimated function y = j’(x) would
then generally be applied to new data known as the test data for which the expected outputs are
not known (ie. (x;,7;) ¢ D). In other words, i samples comprised of j dimensions each can
be arranged as an i X j matrix X and the outputs to a vector y of length i. Therefore supervised

learning can be formulated as a means of identifying a mapping (}) between X and y:

Xoo "' Xoj Yo
i
Xio """ Xij Yi

Supervised learning is further subdivided into two approaches depending on the nature of
the expected outputs: classification and regression.*

In regression the desired outputs are real-valued (or ordinal) ie. y; € R and we seek to
estimate a particular output quantity for a specific input. The simplest example of this would be
the 2-dimensional linear regression problem mentioned above in which we are determining the
parameters of a line (gradient/weight and intercept/ bias) which best fits the training dataset (D)
composed of pairs of x and y values. Once this line has been found we can use it to predict the
value of y; for data in the test set (x; € D).

On the other hand, in classification the expected outputs are categorical or nominal variables
such as class labels like “host” and “endosymbiont” (y; € host, endosymbiont, ..., C). These
classifications can be binary (two possible outputsie. y = {o,1}), multiclass (|y| > 2), or

multilabel (similar to multiclass but outputs aren’t mutually exclusive, i.e. an input have multiple

*It is worth noting that the somewhat confusingly named “logistic regression” is typically a form of classifica-
tion.
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labels ) (Murphy, 2012).

Supervised learning algorithms can also be either probabilistic or non-probabilistic and gen-
erative or discriminative. Probabilistic functions will return a probability distribution associated
with possible class labels or regression values whereas non-probabilistic approaches will only re-
turn the most likely class label or value. Generative algorithms, such as Naive Bayes or Restricted
Boltzmann Machines (RBMs), seek to model the process by which the output data was generated
from the input i.e. learn the joint probability p(x, y) and make predictions on that basis via Bayes

Theorem:

p(x,y) = p(ylx)p(x)
p(x,y) = p(xly)p(y)

pOlx)p(x) = p(xly)p(y)

_ pllyp()

(2.1)

In other words, for classification problems a generative model would determine the statistical
distribution of individual classes whereas discriminative models (such as logistic regression/lin-
ear classifiers) would just determine the boundaries between them. Generative models often
perform better on small training sets by preventing overfitting whereas discriminative classifiers

perform better as the training set grows (Ng and Jordan, 2002).

2.3.1.1 SUPPORT VECTOR MACHINES

Support Vector Machines (SVMs) are a type of sparse kernel maximum-margin supervised clas-
sification algorithm. With the innovation of the kernel trick in 1992 (Boser et al., 1992) and
soft-margins in 1993 (not published until Cortes and Vapnik (1995)) SVMs have been among
the most successfully applied classification algorithms (Fernandez-Delgado et al,, 2014). Only
relatively recently have they begun to lose ground to the deep learning methods such as deep con-
volutional neural networks e.g. LeNet (LeCun et al,, 1998) exemplified by the defeat of SVMs
by the LeNet on the MNIST digit recognition dataset (Hinton and Salakhutdinov, 2006; Bengio
etal., 2007, 2013).

The goal of SVMs is to learn a hyperplane which separates two sets of labels in the dataset.

Note, for multiclass classification, a series of one-vs-all classifiers are typically trained (that is for
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k classes, k SVMs are trained each classifying between label k and all other labels). However, not
all possible hyperplanes that could separate the labels will necessarily generalise well to novel data
(and this generalisation is the ultimate goal of supervised learning). Therefore, it is necessary to
determine a way to select the hyperplane which should generalise best and to do this in a manner
that will be relatively efficient especially with high dimension datasets. This optimal hyperplane
for separable classes can be demonstrated to be the hyperplane which maximises the margin be-
tween the two classes (Vapnik and Kotz, 1982). In other words, the optimal boundary is the one
that has the largest possible distance from each class (while still separating them). Conceptually,
the positioning of this boundary is only dependent on the relatively small subset of the training
data D that is near the boundary and it would be inefficient to consider all points when placing
the decision boundary. For this reason, SVMs can define the decision boundary in terms of the

namesake support vectors and can reformulate their cost function in a more efficient constrained

way.
A Multiple separating hyperplanes in B Maximum margin classifier
binary classification

H2
1

H3

Figure 2.3.2: A: Demonstration of 3 valid decision boundaries in a 2D classification prob-
lem, B: The optimal boundary (H1) is that which maximises the separation of different
classes. This optimal boundary can be defined in terms of support vectors. The bias/inter-
cept has been folded into 6 directly.

A naive formulation of this problem is simple specifically we are trying to find a linear model
f(x) = 0, + 6"x which can be simplified to f(x) = 0x if we assume that the first element of x is
fixed to 1. We thus want to minimise J in terms of 0 to find the largest margin that correctly labels
all the training data (in other words is constrained). Fortunately, due to geometry the margin is

property of the norm of f i.e. ||0|| but we use ||||* for mathematical convenience. Therefore:
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argming ](9):1H9||2 st yi(0x) >1 Vi
2

In reality, this cost function would be converted to a constrained optimisation problem using
Lagrange multipliers and reformulated using the Lagrangian dual form.

The 2nd major enhancement of SVMs is that of soft-margins (Cortes and Vapnik, 1995). Soft-
margins are a way of allowing a degree of misclassification if doing so would increase the size of
the margin that can be generated. Specifically, a user defined penalty constant ¢ is specified and

added to the cost function penalising the degree of misclassification §, e.g.:

argming  J(0) = iHGH2 + cZ; st yi(0x) >1—& Vi

This can improve robustness to outlier data and generally improve generalisability by keeping

the margin as large as possible.

Types of Decision Boundary

e °© . - « Hard-margin boundary
®ec0 "o o © —— Soft-margin boundary
O Class 0
@ Class1

Figure 2.3.3: Demonstration of the utility of a soft-decision boundary to improve the over-
all fit of a decision boundary by allowing a degree of misclassification during training. The
dotted line represents a hard-margin classifier which must have a much smaller margin to
correctly classify the class 0 outlier. On the otherhand by accepting this misclassification the
soft-margin boundary allows a much wider margin.

Finally, the 3rd major advantage of SVMs is that despite nominally being linear classifiers they
can effectively classify data which is not linearly separable in the input dimensions using the ker-
nel trick. Conceptually, a kernel function is used to transform data from the input dimensions
to a higher dimensional space in which the data is linearly separable. These transformed feature
spaces can have incredibly high number of dimensions (in the case of popular kernels like radial

basis function, an infinite number of dimensions). Explicitly transforming data in this way would
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be computationally intensive so instead the “kernel trick” is used, where instead of explicitly trans-
forming all the data into the feature space it is done implicitly by computing the inner product of
all pairs of data points (fig. 2.3.4). This is a lot more efficient and precludes the computationally
intensive step of converting the data into the new, potentially infinite, co-ordinate space. Radial
basis function (RBF) is an example of a commonly used kernel (o forming a hyperparamter):

K(xi,xj) = exp (—M>

207

Even with the kernel trick, operations on every pair of points can become infeasible for large
datasets due to the combinatorial explosion in necessary operations as the dataset increases in
size. However, in the same way that the decision boundary parameters are determined using only
a subset of the training data (i.e. the support vectors) the kernel trick only needs evaluated on a
subset of points near the decision boundary. This is the reason SVMs are sometimes referred to

as sparse kernel methods.
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Figure 2.3.4: A kernel transform can allow SVM to produce non-linear classification bound-
aries by mapping the data to a higher dimensional space in which they are linearly separable.
This is known as the kernel trick and the key to its efficiency in SVM is that it is only evalu-
ated for those sets of points near the decision boundary.

The advantages of SVM is that they are somewhat resistant to the curse of dimensionality i.e.
they are effective with large numbers of features even if the number of features is greater than the
size of the training set. By using support vectors, the kernel trick, and Lagrange bound optimi-
sation they are relatively fast and memory efficient to train and as classification only depends on

the location of the decision boundary very fast to test. Additionally, in simple form, finding the
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hyperplane of an SVM is a true convex optimisation therefore is guaranteed to always find the
global optimum (this guarantee does break with more complex kernels and soft-margins). The
major disadvantage is not natively generating probabilistic output (i.e. attaching a probability
to a certain classification). However, this can be achieved using methods like Platt Scaling or
the related Relevance Vector Machine (RVM) algorithm. The other disadvantage is that hyper-
parameters such as the misclassification penalty for soft-margins (c) and kernel choice (and its
parameters) need chosen, typically this is solved by training using a grid-search of permutations
of these parameter settings and selecting the best model via cross-validation. However, there is
both theoretical and empirical evidence that either random search (Bergstra and Bengio, 2012)
or Bayesian optimisation (Eggensperger et al., 2013 ) are more efficient means of selecting hyper-

par. ameter values.

2.3.2 UNSUPERVISED LEARNING

The other main form of machine learning is that of unsupervised or descriptive learning. In which
the training dataset has no provided output labelsi.e. D = {x; Vi € n}andy ¢ D (where
again 7 is the cardinality of this training dataset). In other words, we just have our dataset and
have no additional information. This is slightly more difficult problem as it lacks an obvious error
metric like supervised learning (i.e. difference between actual output and expected output) but
is important and useful tool to try to discover patterns in datasets.

There are two major groups of unsupervised learning algorithms, the first of which is cluster-
ing algorithms such as k-means that seeks to partition a dataset into a set of groups (see fig. 2.3.5
for more details). The other major group of unsupervised algorithms are those used for visuali-
sation and/or dimensionality reduction. Dimensionality reduction is a way of projecting a multi-
dimensional dataset into a lower number of dimensions in a way that still corresponds to “shape”
of the data in the original number of dimensions.

Formally, dimensionality reduction seeks to take a set of data (D) and convert it to a lower di-
mension form ) knownasamap ) = {y; Vi € n} with each individual x; in D represented by
a corresponding map point y;. It also seeks to do this in a way that maintains as much of the struc-
ture found in the original data as is possible (Maaten and Hinton, 2008). Therefore, if two data
points are similar in the original dimensions they should still be similar in the map ) (and the in-

verse). Some dimensionality reduction approaches are well known in biology, specifically: prin-
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cipal component analysis (PCA) (Hotelling, 1933) and multidimensional scaling (MDS) (Torg-
erson, 1952) which both aim to identify hidden features within the dataset that can explain a high
degree of the variation.

As ever different methodologies have a range of pros and cons, with some better at preserving
global structure (e.g. isomap) and others local data structures (e.g. local linear embedding) and
so on. One of the most recent innovations in this area is that of t-distributed stochastic neighbour-
embedding (t-SNE) in which the similarity of data points in the input space is modelled as pair-
wise probabilities using Gaussian distributions. These probabilities are then translated into po-
sitions in the map ) and similarities re-calculated using Student’s t-distributions. The position
and variance of these points and distributions respectively is then optimised by minimising the
difference between the similarity probabilities in the input space and on the map as assessed by

metrics such as Kullback-Leibler (KL) divergence (Maaten and Hinton, 2008).

2.3.2.1 K-MEANS

k-means clustering is a non-probabilistic unsupervised learning method in which we seek to par-
tition data points in multidimensional space into k clusters. It is often used to initialise Gaussian
mixture models (GMMs).

Specifically, given a set of n observations x = {x,, ..., x,} partition each point (x,) into k
clusters, where typically x is a large matrix.

A cluster can be intuitively considered as a group of observations/points which are “closer”
to one another than to other observations and the kth cluster can defined by its centroid. So, with
k-means clustering we actually seek the set of k cluster centroids g which minimise the sum of
squares distances of each data point from its closest cluster centroid (Bishop, 2006).

If we define a 1-of-k coding scheme with r,; € 0,1 as a binary variable that is 1 when x,, has
been assigned to cluster k (with centroid g, ) and o otherwise then we can define an objective cost
function (J) that represents the sum of squares distances of each data point x, from its assigned

cluster centroid g, .

n k
J= Z Z = ryjllx — gl® (2:2)

i=1 j=1

Therefore, the goal of k-means clustering is to find values for 7, and y, that minimise this
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linear function eq. (2.2). (Bishop, 2006)
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Figure 2.3.5: Demonstration of the k-means algorithm applying 3 rounds of Expectation-
Maximisation (EM) to cluster a group of 2 dimensional samples. The 3 cluster centroids
(represented by coloured rectangles) are randomly initialised in 0 before undergoing 3 rounds
of EM. This involves the successive assignment of samples to their nearest centroids (1a, 2a,
3a) and then the movement of the centroids to the center of the points currently assigned
to that centroid (1b, 2b, 3b). Assignment of a given sample to a centroid is indicated by a
shared colouring and centroid relocation by an arrow with a faded version showing the initial
location.

The standard algorithm proceeds in two alternating steps following the initialisation of y with
starting cluster centroid locations (Forgy, 1965; Lloyd, 1982):
1. argmin, ] ie. minimise eq. (2.2) w.r.t the assignment of points to clusters while keeping

the cluster centroids fixed.
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2. argmin,]ie. ie. minimise eq. (2.2) w.r.t the position of the cluster centroids while keeping

the assignment of points to centroids fixed.

Step 1 roughly corresponds to the expectation step in the expectation-maximisation (EM)
algorithm and is trivially achieved by assigning each point to the cluster represented by the nearest
centroid or formally:

1, if k= argmin;||x, — y}.Hl
Tnk =
o, otherwise

Step 2 roughly corresponds to the maximisation step in EM is can be determined by taking

the partial derivative of J w.r.t y setting it to o and solving for y:

n

9]
a_yk = ZZ 7','k<9€,‘ - yk)

i=1
n

o= 22 Tik<xi - E‘k> (2-3)

i=1

. Z?:l TikX;
S T
In other words set g, to the mean of all data points «, assigned io cluster k (thus k-means)
(Bishop, 2006)
These two steps are repeated until a specified maximum number of iterations are reached or
no points change cluster assignment during step 1.
k-means has many modifications and improvements such as refining the initialisation of the
clusters by the Bradley-Fayyad method (clustering random samples of the dataset and then k-
means clustering the resulting clusters) (Bradley and Bradley, 1998) or over-clustering (running
more than k-means clustering with more than the specified number of clusters and merging clus-
ters at the end to generate the correct number of clusters). One of the most recent and promising
improvements is that of “ying-yang” k-means clustering which gains a moderate speed-up over
the conventional algorithm by minimising the number of distance calculation required. This
is achieved by creating upper and lower bound distance filters using the triangle inequality (i.e.
d(a,b) < d(a,c) + d(b, c) where d is a function that calculates the distance between 2 points)
(Dingetal, 2015).

An efficient implementation of the k-means algorithm is available in the MLPACK C++ Ma-
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chine Learning library (Curtin et al., 2013). While very efficient and effective, k-means has some
limitations, it requires a user specified number of clusters and therefore diagnostics to check for
obvious misspecification in the number clusters. Information criterion can be used to determine
the optimal number of clusters. Additionally, it is not guaranteed to discover the global optimal
clusters (can converge to local optima). This can be amortised by running multiple times with

different initialisations.

2.4 PHYLOGENETICS

Phylogenetics is an effective tool (if there is sufficient signal/ resolution) to investigate the evo-
lutionary ancestry of biological sequence data. It can be used to identify how closely related a
given pair of sequences are, as well as indicate what the sequence most likely looked like in a
shared common ancestor (ancestral node reconstruction). Phylogenetic methods also allow es-
timation of evolutionary processes such as selection pressure, migration, genome reduction, and
horizontal gene transfer. In the context of endosymbiosis, phylogenetics can be used to deter-
mine evolutionary ancestry of the genes recovered in a transcriptome and to aid identification
of the likely origin (host, endosymbiont, contaminant) of these transcripts. Additionally, it can
pinpoint potential horizontal gene transfer events between host and endosymbiont by searching
for single gene/transcript phylogenies that have an incongruent branching pattern compared to
established species trees. Finally, it can be used to aid identification of the putative function of
novel transcripts by comparison to other transcripts of known function from databases such as
genbank.

Phylogenetics can be defined as a means of arranging a set of character sequences into an
optimal hierarchical branching tree structure reflecting some measure of relatedness between the
sequences. Usually, these trees will have variable branch lengths that are product of a measure of
divergence between the connected nodes.

Typically, these sequences take the form of protein or DNA sequences® and the measure of
relatedness is some proxy for evolutionary distance ranging from simple distance measures e.g.

the Hamming distance d, which can be defined for two sequences (in the form of two vectors ¥

SStrictly phylogenetics refers to the study of molecular sequence data although the same methods are applica-
ble to non-molecular characters such as morphological traits (and occasionally originated in this domain) as well
as any other set of discrete data vectors. It has even been applied to fields such as linguistics (Atkinson and Gray,
2005).
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and y of length k) as the sum of the number of positions the sequences differ:

k

d= Z(l - Sxia}’i)

i=o

Note that § is the Kronecker delta function:

1, i=j
o, i#]

to more complicated probabilistic estimations based on observed data. A character is an ele-
ment of a sequence such as an individual base or amino acid, homologous characters are those in
separate sequences that are descended from a common ancestor. As they were the first molecu-
lar sequences easily available much of the early work in molecular phylogenetics was conducted
using protein sequences e.g. (Eck and Dayhoff, 1966; Fitch and Magoliash, 1967).

This phylogenetic estimation can be a non-trivial process (especially with more complex mea-
sures of relatedness) as the number of possible trees rapidly increases with the number of se-
quences. Specifically, for rooted and unrooted trees the number of possible trees n increases by

the number of taxa t as follows:

t
For rooted phylogenies : n = H(3i —3)

i=2

t—1

For unrooted phylogenies : n = H(3i —3)

i=2

However, the key stages in a phylogenetic analysis are that of sequence sampling (selection

of sequences for inclusion in the analysis), alignment (in which homologous sites in the sam-

pled sequences are aligned with one another), masking (in which sites which are evolutionarily

informative — can be determined to be homologous but also non-invariant are selected), model

selection (in which the best fitting evolutionary model is selected or calculated) and finally, phy-

logenetic reconstruction (in which the tree is generated that minimises some measure e.g. most
likely tree for probabilistic models or most parsimonious).

One implication of most current phylogenetic methods s that they implicitly assume abranch-
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ing tree structure is the best representative of the evolutionary process that is being modelled.
However, as the discovered prevalence of horizontal gene transfer has increased it is becoming
clear that in some cases a network like structure may in fact be more appropriate.

Most analyses in this thesis are conducted using amino acid sequences. DNA is more likely
to display a compositional bias and independence of sites is often severely violated due to the
structure of codons. Amino acids have more states so are less susceptible to back mutations than

DNA and are easier to align.

2.4.1 SEQUENCE SAMPLING

Sequence sampling, the selection and identification of sequences for initial inclusion in a phylo-
genetic analysis, is arguably the most important stage in phylogenetic analysis. Any biases intro-
duced here will propagate throughout the rest of the analysis. While some biases can be mitigated
to lesser and greater extents by careful application of various methods in the following stages,
there is a degree of fundamental truth in the statement “garbage in - garbage out”.

The aim of proper taxon sampling is to maximise phylogenetic accuracy and to allow test-
ing of specific hypotheses. Phylogenetic accuracy is usually considered in terms of consistency
(as data increases the analysis tends towards the correct tree), efficiency (how quickly does this
convergence occur), and robustness (how sensitive is the phylogeny to violation of assumptions
in reconstruction) (Nabhan and Sarkar, 2012) Typically, sequence sampling will be conducted
from the basis of a single seed sequence which will be used to query existing databases using align-
ment tools such as BLAST and HMMs to attempt to discover potentially homologous sequences
from different organisms.

The main issues caused by poor taxonomic sampling in molecular phylogenetics are that of
conflicting phylogenetic signals, inadequate rate of evolution to resolve relationships of interest,
and violations of assumptions e.g. expectation of a uniform distribution of traits (Nabhan and
Sarkar, 2012).

Generally, increased taxon sampling has a strong positive effect on phylogenetic accuracy
(Zwickl and Hillis, 2002). However, it can also lead to a situation where there are too many se-
quences to efficiently reconstruct a phylogeny. Care must also be taken not to unintentionally
bias datasets by removing any sequences that are considered “problematic” especially when con-

flicting phylogenetic signal or model violations can be biologically informative. Therefore, it is
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usually necessary to include borderline error-generating sequences within a phylogeny initially
and to iteratively remove them before repeating the phylogenetic inference. Unfortunately, the
reduction of the input sequences to a representative subset by heuristics and/or naive clustering
can generate biases of their own. However, tools exist that utilise taxonomic database informa-
tion to automatically find a set of sequences of a specified cardinality/size which displays the
maximum possible taxonomic diversity for that set size (Zhou et al,, 2014).

Another source of bias in sequence sampling is the usually heuristic choice of outgroup taxa.
Most contemporary models of phylogenetic inference only infer unrooted trees. Therefore, it is
common practice to “root a tree” by selecting a set of sequences from known evolutionarily dis-
tance organisms to form an outgroup. If this outgroup is correctly recovered (monophyletically)
the root can be placed between it and the other sequences in the phylogeny (Yang and Rannala,
2012). However, choice of outgroup can change implications which may be drawn from a phy-
logeny regardless of methodology used to infer it (Milinkovitch et al., 1996). Care must be taken
to ensure the selected outgroup doesn’t actively distort the accuracy of inference of the rest of the

phylogeny regardless of the issue of root placement (Milinkovitch and Lyons-Weiler, 1998).

2.4.2 MULTIPLE SEQUENCE ALIGNMENT

The goal of multiple sequence alignment (MSA) is to align sets sequences such that evolution-
arily homologous residues occupy the same column. In other words, any given column in the
alignment theoretically should contain amino acid or nucleotide residues that derive from the
same common ancestor and have evolved in each sequence lineage. It is also possible that inser-
tion or deletion events have taken place and a particular residue is absent in the ancestral node or
sequence lineage.

This is a non-trivial computational problem which has been proven to have an NP-complete®
computational complexity (Wang and Jiang, 1994). Specifically, the optimal alignment of n se-
quences has a complexity of O(I") for n sequences of length I(Sievers et al., 2011).

Due to this complexity, the majority of MSA algorithms implement heuristic approaches in
order to get, if not the optimal solution, a sufficiently good one in a reasonable amount of time.

Typically, MSA algorithms start by generating the sets of all pairwise alignments using estab-

®A decision problem for which an answer can be verified in polynomial time by a non-deterministic Turing
machine and to and from which any NP-hard problem can be translated (Karp, 1972).
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lished pairwise alignment algorithms. Pairwise alignment algorithms are almost all based upon a

pair of “Ur-algorithms” with different goals: Needleman-Wunsch, a global alignment algorithms

(which attempts to maximise alignment quality over entire sequence lengths) (Needleman and

Waunsch, 1970) and Smith-Waterman, a local alignment algorithm (which is optimised towards

producing high quality alignments in sub-strings) (Smith and Waterman, 1981). While early
MSA algorithms were typically largely derived from Needleman-Wunsch most modern algorithms
seek to combine optimisation oflocal and global alignments. The distances used in these pairwise

alignments will typically be “scored” based upon which matches or alignments are more frequent

substitutions (e.g. Leucine and its isomer Isoleucine or Adenine to its fellow purine base Gua-
nine (transition)) are positively scored. Alternatively, gaps (extension of a gap is typically less

penalised than creating a gap) or unlikely changes (e.g. the transversion of Adenine to Cytosine

or Glutamine to Cysteine) are penalised. This will generally be codified in a substitution matrix
e.g. the PAM (Dayhoffet al,, 1978), BLOSUM (Henikoff and Henikoff, 1992) amino acid matri-
ces and their numerous subsequent derivations and improvements.

The mostly widely heuristic used to go from these series of pair-wise alignments to a useful
MSA is that of progressive-alignment (Feng and Doolittle, 1987) (implemented in tools such as
CLUSTAL W (Thompson et al., 1994)). This involves building the pairwise alignment scores
into a distance matrix which summarises the relative divergence of each pair of sequences. From
this matrix a “guide-tree” is generated using simple neighbour-joining methods (in which a tree is
built by recursively clustering the least dissimilar sequences (Saitou and Nei, 1987)). Sequences
are then progressively aligned using their branching order within this guide-tree (Thompson et al.,
1994). This drastically reduces the O(I") complexity to approximately O(n*) (Sieversetal., 2011).
While there have been various improvements and alternative approaches created such as merg-
ing both local and global alignment (Notredame et al., 2000), rapid identification of homologous
regions using Fast Fourier Transforms (FFT) (Katoh et al.,, 2002), iterative refinement of align-
ments (Edgar, 2004b) and use of Hidden-Markov Models (Eddy, 1995).

There have been compelling arguments as early as 1991 that MSA in isolation from phylo-
genetic inference is inherently flawed as the consideration of evolutionary processes (only really
done during phylogenetic inference) is key in the objective weighting and assessment of potential

alignments (Thorne et al., 1991). Therefore, the phylogeny and MSA should be jointly inferred
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(Thorne et al,, 1991; Redelings and Suchard, 2005; Bouchard-Cété and Jordan, 2013). This ap-
proach also minimises the risk of conscious or subconscious researcher bias towards alignments
and subsequent phylogenies that support their pre-conceived ideas. This approach has been at-
tempted using interesting probabilistic programming approachesi.e. BALI-phy (Suchard and Re-
delings, 2006). Unfortunately, it is still far too slow a process to infer phylogenies in this manner
on large or even moderately sized datasets. This means, that for now, independent MSA esti-
mation is here to stay, at least until computational resources and algorithmic development has
continued until these more theoretically satisfying approaches become feasible.

Therefore, throughout this thesis, two progressive/iterative alignment tools will be used: Kaligna
(Lassmann and Sonnhammer, 2005; Lassmann et al., 2009) for high-throughput analyses and it-
eratively refined MAFFT7 (Katoh et al., 2002, 2005; Katoh and Standley, 2013 for individual ac-
curacy critical phylogenetic analyses. Kalign is a very high-speed and relatively accurate (Thomp-
sonetal, 2011) progessive alignment tool that uses an efficient and fast Wu-Manber approximate
string-matching algorithm to calculate sequence distances (Lassmann and Sonnhammer, 2005 ).
MAFFT, with iterative refinement, is a relatively slow but highly accurate MSA alignment method
(Thompson et al., 2011) that incorporates all pairwise alignment information when refining in-

stead of using heuristics to approximate pairwise sequence differences like most approaches.

2.4.3 MASKING

Unfortunately, MSA is far from perfect, especially with the faster algorithms necessary for larger
datasets and higher throughput. Therefore, it is often necessary to trim alignments to manually
fix any obviously misaligned residues, and remove any ambiguously aligned or absent sites. This
has been demonstrated to improve phylogenetic accuracy (Talavera and Castresana, 2007).
However, manual masking can also be a major source of researcher-bias as well as a painstak-
ing process. For this reason, there are tools that attempt to automate this process. They typically
score each column independently with criteria including number of absent character states, how
similar/variable the character is and if there are multiple putative alignments - how likely is that
column to be found in multiple different MSAs. These criteria can then be used to mask out cer-
tain columns based on certain thresholds and trade-offs between the length of the alignment and
inclusion of low-scoring columns. TrimAL is an example of a tool that automates the masking

process using this sort of methodology (Capella-Gutiérrez et al., 2009).
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Similarly to MSA, for high-throughput analyses I will use TrimAL whereas for individual ac-
curacy critical analyses masking will be done manually using the graphical tool Seaview (Gouy

etal, 2010).

2.4.4 SUBSTITUTION MODEL SELECTION

While the simplest means of phylogenetic inference - parsimony i.e. finding the tree that requires
the fewest sequence changes - does not require any explicit model of sequence evolution (see
section 2.4.5 ), all other means of phylogenetic inference do (Le and Gascuel, 2008).

A substitution model is, in its simplest sense, the same as the PAM and BLOSUM matrices
used in pairwise and MSA. They are a means of scoring and weighting the significance of different
character changes e.g. is an A to a G a more evolutionarily rare state change for a given dataset
thananAtoaT.

Substitution models typically assume neutrality, independence and finite sites. With the
probability of substitution rates having an independent and identically distributed (i.i.d) (Hasegawa
etal., 1985). This measure of distance can be naive models where rates of change between charac-
ter states and the frequency of each state isequal (ie. p(x — y) VaVy € G,C,T,A where x #
y (Jukes and Cantor, 1969)) to models fully parameterised in terms of character frequency and
rates of change by the masked alignment e.g. the generalised time-reversible (GTR) model (Tavare,
1986). While models like GTR can feasibly be fully parameterised with DNA sequence data due
to DNA's relatively few character states it is usually necessary to use empirically-defined models
for amino acid datasets. These are substitution matrices that have been determined using the em-
pirically observed substitution rates for various amino acids changes in many large MSAs (Le and
Gascuel, 2008).

Unfortunately, a single substitution model will rarely hold true over an entire alignment with
the rate of evolution varying both across and within sites (heterogeneity and heterotachy). The
frequency of character states also frequently changes across a phylogeny. It is important to control
for these phenomena, because, as mentioned earlier, violation of model assumptions can decrease
phylogenetic accuracy.

The most frequent violation that is controlled for is allowing the rate of substitution to vary
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across sites by using a I distribution:
a
varr = E
_a
br = E

with a given shape a and trivial scale factor f depending on the dataset to scale rates at each site.
For datasets that have a high degree of rate heterogeneity a low valued a produces a broad distri-
bution of rates, whereas a high value will generate a narrow distribution for datasets with low rate
heterogeneity (Yang, 1993 ). For reasons of computational efficiency T is typically approximated
as a discrete distribution of 4 to 8 categories of equal probability (Yang, 1994). A more limited
version of this is the invariant sites model in which sites are divided into 2 classes, one considered
invariable while the other has normal substitution rates applied (Hasegawa et al., 1985).”

Unfortunately, these models still assume other model parameters namely the equilibrium fre-
quencies and relative rates are the same across sites (but just scaled). However, some models have
been proposed with multiple rate matrices (Lartillot and Philippe, 2004) and state frequencies
can be defined at each site (Bruno, 1996) but needs lots of taxa (Lartillot and Philippe, 2004,).
Another alternative is the CAT model which is a mixture model with k classes each containing a
different state frequency. If k = n then this is similar to the aforementioned Bruno’s model, how-
ever, generally k < n. A probabilistic process known as a Dirichlet Process Prior (DPP) is used
to assign columns to various state frequency classes and simultaneously determines the optimal
value of k during this process (Lartillot and Philippe, 2004). An alternative to this approach is
explicitly partitioning a masked alignment and generating a model and state frequencies for each
partition, some consider this equivalent to a CAT model depending akin to preferences for fixed-
effects vs random-effects models (Yang and Rannala, 2012). However, automated partitioning
using a DPP has the advantage of not requiring arbitrary user-defined partitions, which could be
a source of bias.

Finally, the rate of evolution can vary even with a site itself (a process known as heterotachy)
especially when large numbers of divergent taxa are included in a masked alignment. One model
modification which attempts to control for this is that of the concomitantly variable codon or
“covarion” model (Penny et al., 2001). It allows sites to switch between “on” and “off” across the

tree with the proportion of sites in the relative states determined at each site (Zhou et al,, 2010).

7This can also be used with I' and is approximately equivalent to the addition of another discrete I' category.
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Generally, simpler models such as the “null” parsimony model or basic models that don’t ac-
count for complex evolutionary phenomena are more susceptible to artefacts such aslong-branch
attraction (LBA) (Yang, 1996).

However, in the grand tradition of “no-free lunch’, there is no universally best model for all
datasets. Therefore, it is necessary to test multiple competing models using a provided MSA. Typ-
ically, these models are then compared for their fit to the observed data using information crite-
rion (Sullivan and Joyce, 2005) such as Akaike’s (AIC) which assess fit while penalising model
complexity in a standard regularisation trade-off (AIC = 2k — 2In(l) where k is the number of
parameters and [ the model likelihood (Akaike, 1974)). Other criteria include corrected AIC
(Sugiura, 1978), Bayesian Information Criteria (Schwarz, 1978) and Decision Theoretic criteria
(Minin et al., 2003 ) based approaches (Sullivan and Joyce, 2005).

Throughout this thesis, I will use two tools which incorporate these various criteria to infer
the best fitting model depending on the input data. ProtTest3 (Abascal et al,, 2005; Darriba et al.,
2011) will be used for analyses involving protein sequences and jModelTest2 (Posada, 2008; Dar-

riba et al,, 2012) for phylogenetic inference of DNA datasets.

2.4.5 PHYLOGENETIC INFERENCE
2.4.5.1 DISTANCE AND PARSIMONY METHODS

The simplest phylogenetic inferences are those of distance matrix methods. Distance matrix
methods (Fitch and Magoliash, 1967) work on the basis of generating a matrix representing the
pairwise distances of each sequence using the selected substitution model and inferring a phy-
logeny from this. The simplest case would be searching tree space for the optimal tree using a
standard least-squares criteria between actual and expected branch lengths (i.e. distances) (Fitch
and Magoliash, 1967; Cavalli-Sforza and Edwards, 1967).

However, the most common is that of neighbour-joining which begins with the distance ma-
trixand a star topology tree in which all leafnode branches are connected to a single shared central

node. Then:

1. Find the closest two branches in the distance matrix

8LBA is a distorting effect in which long branches (rapidly diverging) are incorrectly placed close to one an-
other regardless of actual shared homology. This is due to the increased chance of rapidly diverging sequences to
share independently acquired residues (Bergsten, 2005).
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2. Join the closest pair into a single branch with a new internal node connected to central

node

3. Generate a new distance matrix consisting of the distances of each leaf from this new inter-

nal node.
4. Repeat the process with the new matrix (Nei, 1987)

It works on the assumption that the true tree has the smallest expected length (minimum evo-
lution) and a short tree that has similar topology can be achieved using the fast simple agglom-
erative algorithm. NJ is one of the best distance methods and is more reliable than maximum-
parsimony which can be asymptotically inconsistent While already efficient (possibly efficient as
possible) NJ can be made more efficient using effective heuristics to search tree space (Kumar,
1996) as well as improvements where variance is minimised instead of pure distance improving
performance in datasets with high substitution rates e.g. BION] (Gascuel, 1997).

Distance methods are very fast but can perform very poorly for divergent sequences with
large sampling errors as they don’t generally account for variance in distance estimates (Yang and
Rannala, 2012).

Parsimony approaches (Camin and Sokal, 1965) on molecular sequences (Eck and Dayhoff,
1966) seek to infer the maximum parsimony (MP) tree. That is the tree which requires the small-
est number of character changes (has the best tree score). Where the tree score is the sum of all
character lengths (the minimum number of changes for each site in the alignment). Any site that
isinvariable is not informative for generation of a parsimony tree. MP has no explicit assumptions
relative to other methods however, this also means it is difficult to build in prior knowledge of se-
quence evolution when generating a tree. It also fails when multiple substitutions have occurred
at the same site or with parallel changes in two long branches and therefore is especially prone to
long-branch attraction (Felsenstein, 1978). The popularity of parsimony methods has declined
with discoveries that they can produce statistically inconsistent phylogenies (Felsenstein, 2001).
Interestingly, maximum likelihood inference under the no common mechanism model (which
involves independent branch-length estimation for every site and branch) will result in the same
phylogeny as parsimony (Tuffley and Steel, 1997). Therefore, arguably parsimony can be a special
case of likelihood.
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2.4.5.2 MAXIMUM LIKELIHOOD

Maximum likelihood (ML) methods seek to discover the maximum-likelihood estimates (MLEs)
of the tree parameters (topology 7, branch length 6; and usually substitution model parameters
6,) for the datai.e. MLE of (7, 6y, 6,,).

These MLEs are estimated numerically using standard iterative optimisation algorithms. They
were developed relatively early in molecular phylogenetics using relatively simple models (Ney-
man, 1971) but more efficient implementations, e.g. (Felsenstein, 1981), and increased compu-
tational power has made them one of the more popular means for phylogenetic inference.

Generally, an ML approach will sequentially perturb a starting tree topology (often BION]
or simple ML tree itself) using branch swapping operations such as Nearest-Neighbour Inter-
changes (NNI) or Subtree-Prune-and-Regraph (SPR) where whole subtrees are removed and
reattached to a different part of tree. SPR is slower but less prone to get caught in local op-
tima than NNI and thus will lead to higher likelihood phylogenies overall (Criscuolo, 2011).
Expectation-maximisation or the Newton-Raphson method can then be used to find the MLE
for branch length and model parameters. For example, PhyML uses an initial BION]J and stan-
dard hill-climbing which perturbs topology and branch lengths simultaneously.

The advantage of ML approaches is that they have explicit model assumptions (which can
therefore be tested), are relatively robust to model misspecification, are relatively efficient in a
phylogenetic sense, and can make use of sophisticated evolutionary models. They can thus com-
pensate for many pathological data features (heterotachy, state and rate heterogeneity within and
across sites) (Yang and Rannala, 2012). Almost all published phylogenies are Bayesian or ML
(or ideally both) for this reason. Unfortunately, ML inference is also relatively slow to calculate
especially in comparison to distance methods.

In order to get an estimate for the robustness of a particular phylogenetic ML inference, the
masked alignment can be repeatedly resampled (bootstrap samples) with replacement and phy-
logenies regenerated. Each node can then be scored based on the proportion of these bootstrap
samples in which it is recapitulated (Felsenstein, 1985). A similar approach, known as jackknif-
ing, uses random subsets of the alignment instead of samples (Miller, 1974; Lapointe etal., 1994).
Finally, approximate likelihood-ratio tests (aLRT) can be used on branches to give support val-

ues by comparing the likelihood of existence of a given branch compared to its non-existences
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(Anisimova and Gascuel, 2006). There is considerable literature evaluating the pros and cons of
different support schemes. However, bootstrap supports are the de facto method of inferring a
variance of phylogenetic error (Stamatakis et al., 2008) as they are both simple and conservative
(but are computationally expensive) (Anisimova and Gascuel, 2006). It should be noted that
all of the above methods of determining phylogenetic robustness can be applied to distance and
parsimony methods as well.

In this work, for high-throughput analyses FastTree2 was used due to its considerable greater
speed relative to ML inference tools (Price et al., 2010). For individual phylogenetic analyses ML

trees were inferred using RAXMLS (Stamatakis, 2014) and non-rapid bootstrap supports.

2.4.5.3 BAYESIAN INFERENCE

Bayesian inference is, as the name suggests, based on the Bayes theorem (eq. (2.1)). Specifically,

the most probable tree is recovered based on the posterior probability:

p(T, 617 GF)P(D|T7 917 614)

p(Ta 917 9H|D) = P(D)

where p(7, 0}, 6,) are the prior probability for model parameters (topology 7, branch length 6,
substitution model 6,,) and p(D|r, 6;, 6,,) is the likelihood of the data given a certain set of param-
eters with p(D) as the marginal probability.

Due to the computational difficulty directly calculating the marginal likelihood (integrated
over all possible parameter values in all dimensions) phylogenetic inference uses a process known
as Markov-Chain Monte-Carlo (MCMC) to sequentially randomly sample the posterior proba-
bility distribution. Conceptually, these can be considered as random walkers on the probability
distribution that are more likely to accept new movements that increase the likelihood than de-
crease it.

An advantage of Bayesian inference is that the posterior probability (PP) of a given node
means “support” values are built-in to the inference and additional bootstrapping is unnecessary.
Unfortunately, posterior probabilities are sensitive to model violations and have been found to
not be very conservative estimators of branch support (Simmons, 2003) (although again there
has been considerable work comparing Bootstraps to PP (Anisimova and Gascuel, 2006)). Ad-

ditionally, the prior distribution in Bayesian Inference allows information that is already known
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about the dataset to effectively be built-in to the inference. This potentially improves phyloge-
netic accuracy.

Allin-depth individual phylogenetic analyses presented in this thesis were inferred using both
Bayesian (via MrBayes3 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003;
Rongquist et al., 2012)) and ML methods. Phylogenies are then presented with both PP and boot-

strap support values on each node inferred using both methodologies.

2.5 INFORMATICS LANGUAGES AND HARDWARE

2.5.1 LANGUAGES AND LIBRARIES

Several programming languages and a range of libraries were used throughout this PhD depend-
ing on the suitability of a particular tool for a task. The full details of the specific tools used for the
main analyses are outlined during the description of these analyses, however, the tools used for
prototyping as well as those used for smaller tasks not covered in detail are omitted elsewhere.

Languages and libraries were chosen depending on their best fit for a particular task. Perfor-
mance sensitive code such as those dealing with large datasets (e.g. high-throughput sequencing
libraries or image data) were principally conducted using the C++ language in line with the C++11
standard (ISO International Standard, 2011)

The main C++ libraries used in addition to the C++11 standard library were:

. Seqtk - fastq/a sequence parsing library (Li, 2015)
« MLPACK - a high-performance machine learning library (Curtin et al., 2013)
« OpenCV3 - widely used computer vision library (Bradski, 2000)

« Armadillo - numerical computation library (Sanderson, 2010)

The majority of tasks were accomplished using the high-level python language (python2.7
or python3.4 depending on the application). In addition to the standard library, the numeri-
cal computation libraries numpy and theano, machine learning library scikit-1learn, statis-
tical and scientific libraries scipy and pandas, the bioinformatics libraries scikit-bio and
biopython, and plotting libraries holoviews, matplotlib, and seaborn were all used ex-
tensively. Frequent use was made of literate programming offered by environments such as the

ipython notebook (recently renamed jupyter).
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The statistical programming language R (R Core Team, 2015) was used for some data analysis
and visualisation primarily using ggplot2 (Wickham, 2009) and dplyr (Wickham and Fran-
cois, 2014). This was primarily done using the R-Studio (http://www.rstudio.com/) in-
tegrated development environment) and R-markdown (Allaire et al., 2014).

All code was version controlled using git (http://git-scm.com/) and remotely hosted
usinggithub (https://github.com/)andbitbucket (https://bitbucket.org/)ser-
vices. Unit tests were automatically run on synchronisation (‘push’) with these remote servers
using the Travis (https://travis-ci.org/) Continuous Integration (CI) service.

Incidental scripting was done using zsh and bash languages and all code was written using

vimin an st terminal.

2.5.2 HARDWARE

All analyses were conducted on either the lab cluster (running Ubuntu Server LTS 12.04 and

14.04 (http://www.ubuntu. com):
« PowerEdgeM910 with 2 x Intel Xeon CPUE6510 @ 1.73GHz, 512GBRAM
« PowerEdgeM910 with 2 x Intel Xeon CPU E7-4807 @ 1.87GHz, 512GBRAM
« PowerEdgeM620 with 2 x Intel Xeon CPU E6-2650 v2 @ 2.60GHz, 512GBRAM

Or on two workstations both running continuously updated versions of Arch Linux (https:

//www.archlinux.org/).
« Apple MacPro with 2 x Intel Xeon CPU E5520 @ 2.27GHz, 16GBRAM

« Dell Precision T7500 with 2 x Intel Xeon E5620 @ 2.4GHz, 48GB RAM
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Taxonomy is described sometimes as a science and some-

times as an art, but really it's a battleground

- Bill Bryson: A Short History of Nearly Everything

Endosymbiont diversity

3.1 INTRODUCTION

3.1.1 ENDOSYMBIONT TAXONOMY AND CLONALITY

Over 5o strains of green algal photobionts have been identified in Paramecium bursaria species
(Hoshina et al., 2010, 2004; Hoshina and Imamura, 2009; Summerer et al., 2008; Vorobyev et al.,
2009). These form atleast four distinct species groups, believed to be represented in the following

cultures:

« Micractinium reisseri (e.g. former “European” group endosymbionts such as those attributed

to CCAP 1660/12)

« Chlorella variabilis (e.g. former “American” group endosymbionts such as Chlorella vari-

abilis NC64A)

« Chlorella vulgaris (e.g. the endosymbiont attributed to CCAP 1660/10)
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o Coccomyxa sp. (e.g. the endosymbiont attributed to CCAP 1660/13)

These species display a polyphyletic distribution within the green algae providing evidence for
multiple separate origin events for the P. bursaria endosymbiosis (Hoshina and Imamura, 2008,
2009) Furthermore, there is emerging evidence, in the form of intron HGTs and ITS2 sequencing
data that strains of P. bursaria are capable of hosting double and triple co-habitations of different
photobiont species (Hoshina, 2012). Therefore, before an effective analysis can take place of an
endosymbiotic system it is important to carefully define the species (singular or plural) involved.

Unfortunately, the systematics of the Chlorophyta has experienced a relatively high degree of
flux, with multiple redefinitions even since the initial use of molecular phylogenetics of ribosomal
sequences (Hori et al., 1985; Gunderson et al., 1987) in the 1980s (Leliaert et al., 2012; Hoshina
etal, 2010). The algal endosymbionts of Paramecium bursaria in particular have gone through a
range of names and classifications starting with Zoochlorella in 1882 and through various species
of the genus Chlorella (Hoshina et al,, 2010).

Initially, all symbiotic algae were named as single Chlorella paramecii species but this name
was rejected and Chlorella variabilis was defined (Shihira and Krauss, 1965) but this was in turn
rejected and fell out of use. Later, the first discovery of the existence of multiple distinct strains
of photobiont was published (Douglas, 1986). With this came the understanding that the en-
dosymbionts of P. bursaria are likely to be divergent but not distinct species to other described
free-living Chlorella (Hoshina et al,, 2010).

To add further confusion to the system, the most recently accepted terms defined species of
endosymbiont merely as “American” and “European” leading to several misidentifications (Ko-
dama et al., 2007; Hoshina et al., 2010). Recently, these two organisms have been redescribed
as distinct species Chlorella variabilis and Micractinium reisseri respectively (Hoshina et al,, 2010).
Therefore, care must be taken when reading older literature to distinguish the earlier less well-
defined C. variabilis from the modern usage.

Another source of complication in the systematics of the photobionts are the cases of misla-
belling and loss of cultures by culture collections. For example, the initial culture from which the
original Chlorella variabilis was described from was lost and a supposedly identical culture from
a different collection was found to have wildly different biochemical properties (Hoshina et al.,

2010). These complications and confusions add to the importance of accurate endosymbiont
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species identification.

3.1.2 ITS2 TAXONOMIC PROFILING

The most widely accepted means of rapidly taxonomically profiling Archaeplastida (and indeed
a range of eukaryote species) is that of nuclear ribosomal internal transcribed spacer 2 (ITS2)
(see fig. 3.1.1) barcoding. ITS2 has shown particular utility in the identification and separation
of closely related green algal species (Buchheim et al., 2011; Heeg and Wolf, 2015) due to being
universal, reliably amplifiable and highly variable (Hershkovitz and Lewis, 1996).

ITS2 barcoding has been recommended as a superior marker to other universal Archaeplas-
tida DNA barcodes such as the rbcL (Chen et al., 2010). The conserved nature of the flanking
5.8S and 18S sequences allows near universal primers to be designed which efhiciently amplify

ITS2 sequences unlike the broadly distributed but highly variable rbcL (Buchheim et al., 2011).

rDNA
—NTS 5' ETS=( 185 1751~ 5.85 J-1TS2 3'ETS NTS—

pre-rRNA

rRNA

185 (5.85) ( 285 )

Figure 3.1.1: Structure of Eukaryotic nuclear ribosomal DNA. rRNA genes exist in tandem
repeats separated by nontranscribed spacers (NTS). These NTS are composed of internally
transcribed spacers (ITS) and externally transcribed spacers (ETS). ITS2 is highlighted in
green and forms an effective taxonomic barcode at sequence level for eukaryotic species anal-
yses. The ITS2 secondary structure shows a greater level of conservation and can be used to
investigate lower distance systematic relationships. Figure was redrawn from (Shi, 2005).

In many species the rDNA cistron is present in multiple copies as tandem head-to-tail repeats
varying in copy number from one or two copies to thousands (Torres-Machorro et al., 2010).
While these copies are frequently homogeneous there are many organisms that display intranu-
clear variation (Buchheim etal,, 2011). For example, alveolates have been discovered with variant
rDNA copies (Stern et al,, 2012; Galluzzi et al,, 2004). At different points in the life cycle of Plas-
modium spp. (Nishimoto et al., 2008) there is expression of SSU rRNA gene paralogues with
up to 11% difference (McCutchan et al., 1988; Chambouvet et al,, 2015). Similarly, chlorophytes
have previously displayed heterogeneity in rDNA copies (Pillmann et al.,, 1997; Fama etal., 2000).

Therefore, care must be taken not to assume intranuclear homogeneity in phylogenetic analysis
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of ITS2 sequences (Buchheim et al,, 2011)

This said, ITS2 sequencing will identify the endosymbiont species in the CCAP 1660/ 12,
Yad1g1N and CCAP 1660/13 cultures. It will also offer a method by which the clonality within
the photobiont populations can be investigated. By amplifying and sequencing a large number
of ITS2 fragments from the same culture there is a reasonably good chance that all the ITS2 level
diversity will be sampled. If, on analysis, these sequences form multiple clades or display diver-
gent groupings this could be strong evidence for a multiple photobiont co-habitation within the
P. bursaria host.

Finally, one last means in which we sought to gain additional insight into the host-endosymbiont
system was through the use of multiple-displacement amplification (MDA) based sequencing
(Lasken, 2007). Due to difficulties in obtaining sufficient culture densities and the prevalence of
putative sources of contamination within the culture, bulk genome sequencing was considered
to be prone to major difficulties. Therefore, MDA offered a way in which we could further inves-
tigate this question of photobiont clonality while also generating a resource with potential use
for further analysis. For example, searching for potentially biologically significant genes that are
present in the genome but are not transcribed during endosymbiosis. The utility of this genomic
resource hinges on our ability to partition recovered genomes/contigs into the originating host
and endosymbiont genomes. It is particularly important to do this and effectively discard con-
taminant contigs derived from bacteria (food and symbionts) and viruses associated with the

host.

3.1.3 ISOLATION OF P. BURSARIA

One avenue that is important for an effective analysis of a host-endosymbiont system is the abil-
ity to analyse the partners in isolation. This can be used to test individual hypotheses regarding
each partner and allows controlled reintroduction experiments to be undertaken. Unfortunately,
the majority of extant, well-characterised endosymbioses display metabolic co-dependence and
therefore, host and endosymbiont cannot be isolated without one or other dying (i.e. they form
an obligate relationship as supposed to a facultative one).

Fortunately, there have been numerous studies that have investigated the separation of host
and symbiont in P. bursaria - green algal systems e.g. (Hosoya et al., 1995; Achilles-Day and Day,

2013b; Karakashian, 1963 ). Most recently, the only transcriptomic analysis of this system by Ko-
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dama and Fujishima (2014) investigated the differential global metatranscriptome profile of P
bursaria Yad1g strain with and without its Chlorella variabilis 1N endosymbiont (Kodama and
Fujishima, 2014). While, this is a different strain of both host and endosymbiont to the SW1-ZK
strains in the CCAP1660/12 culture (P. bursaria and Micractinium reisseri) reproduction of this
endosymbiont clearing offers a potential avenue by which to further investigate and, combined
with RNA, to test the functional underpinning of this relationship.

There have been several published methods for clearing endosymbionts from host cells namely,
the herbicide paraquat (Hosoya etal., 1995 ), culturing under constant dark (Karakashian, 1963),
herbicide DCMU (Kodama and Fujishima, 2009), X-ray (Wichterman, 1948), and cyclohex-
imide (Weis, 1984; Kodama et al., 2007). Therefore, we attempted three of these methods: specif-
ically paraquat, cycloheximide, and constant darkness treatments with bacterial feeding in order

to clear endosymbionts from the host Paramecium.

3.2 AiMs

In this chapter I will determine the exact algal endosymbiont strains present in the principal
Paramecium bursaria cultures used throughout this thesis and their relationships relative to one
another and to other green algae.

I'will also use this data and single cell genomics to investigate whether the algal endosymbiont
present in the Paramecium bursaria-Micractinium reisseri CCAP 1660/ 12 strains form a clonal pop-
ulation.

Finally, I will discuss the attempts to remove the endosymbiont in the Paramecium bursaria

CCAP 1660/ 12 strain from the host.

3.3 METHODS

3.3.1 TAXONOMIC ANALYSIS
3.3.1.1 ITS2 SEQUENCING

Paramecium bursaria CCAP 1660/ 12 and Paramecium bursaria CCAP 1660/13 cultures were
maintained in New Cereal Life (NCL) media at 18 °C with 12:12 hour light/dark cycle. In order

to mitigate the risk of sequencing free-living algae in the CCAP 1660/13 culture, ITS2 sequences
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Figure 3.3.1: Schematic diagram showing the location of the forward (ITS2-S2F) and re-
verse primers (CHspeHLR1R, ITS4-R) used for the amplification of ITS2 sequences in this
study. CHspeHLR1R binds within the 28S whereas ITS4-R binds closer to the 5’ end of the
28S. Both primer sets recover the full ITS2 sequence.

were acquired from both pure culture samples and carefully purified samples. Purification in-
volved successive filtering and washing steps of isolated cells in sterile NCL media. Specifically,
filtration using a 10 pym filter, washing off, re-suspension and 3 serial subcultures in sterile NCL
media.

ITS2 sequences were amplified using 2 pairs of primers: 1TS2-S2F primer (“ATGCGAT-
ACTTGGTGTGAAT”) binding to conserved 5.8S sequences from (Chen et al.,, 2010) with the
CHspeHLR1R (“CACTAGACTACAATTCGCCAGCC”) reverse primer specific to chlorophyte
28S (Hoshina et al,, 2004) and the ITS4 primer (“TCCTCCGCTIATTGATATGC”) (White
etal, 1990) (see fig. 3.3.1). The reason for the dual primer approach was that it was observed in
the smaller biological samples created during the cleaning process that the ITS2-S2F - CHspeHLR1R
primer pair wasn’t amplifying I'TS2 very efliciently therefore the alternate primer pair was used.

PCR conditions used were 94 °C for 5 min followed by 40 cycles of 30 s at 94 °C, 30 s at 56 °C
and 45 s at 72 °C. This was followed by a final elongation step of 10 min at 72 °C.

PCR products were then cleaned up, cloned, sequenced and processed using the same proto-
col as (Maguire et al., 2014). Briefly, the successfully amplified PCR products were gel-purified
(Wizard SV Gel and PCR Clean-Up kit, Promega). These products were then TA-cloned using
Agilent’s PCR StrataClone Cloning kit, blue-white screened and s clones selected for each PCR
product. Clones were then externally Sanger sequenced using the M13Rev primer at MWG Eu-
rofins. Flanking vector and primer sequences were removed, sequences trimmed to areas of high
chromatograph quality and ambiguously defined bases corrected using Sequencher (Gene Codes,
2015).

From the 3 Paramecium bursaria CCAP 1660/ 12 biological replicates 14, 9, and 11 ITS2 se-
quences were obtained respectively. Similarly, from the 2 Paramecium bursaria CCAP 1660/13

biological replicates 8 were obtained from sequences obtained from the culture directly, and 10
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from the purified, washed samples (77 using ITS2-S2F-ITS4 primers and 3 using ITS2-CHspe).
Additionally, 5 ITS2 sequences were acquired from the Yad1g1N culture following the same pro-
tocol.

In order to mitigate the risk of sequencing error masquerading as true sequence divergence
any sequences found in later phylogenetic analysis to demonstrate single nucleotide changes from
the consensus ofits clade placement was resequenced at MWG Eurofins in reverse using M 13 Uni.
Specifically, these were ITS-B18, ITS-2, ITS-19, ITS-B6, ITS-B3, ITS-A7, ITS-6, ITS-B1s, ITS-
10, ITS-9,ITS-15,and ITS-1.

See appendices (section A.1) for a full listing of trimmed sequences and representative gel

images of the cloning products.

3.3.1.2 PHYLOGENETICS

ITS2 sequences used in (Hoshina etal,, 2010), (Hoshina and Fujiwara, 2013 ) were retrieved from
genbank. The trimmed sequences and the established database sequences were then aligned us-
ing MUSCLE (Edgar, 2004a). This alignment was manually masked in the graphical SeaView
(Gouy et al,, 2010) package. jModelTest2 (Guindon and Gascuel, 2003; Darriba et al,, 2012)
was then used to pick an appropriate substitution model. Finally, phylogenies were inferred us-
ing the maximum likelihood method via RAXML version 8 (Stamatakis, 2014) with 1,000 boot-
strap replicates. Similarly, MrBayes (Huelsenbeck and Ronquist, 2001) was used to infer the
phylogeny using the bayesian framework. MrBayes used 2 independent runs of 4 Monte-Carlo
Markov-Chains (MCMC) for 3,750,000 generations (at which point the 2 runs were considered
to have converged, as determined in Tracer vi.4 (Rambaut and Drummond, 2007). Trees were
estimated from the MCMC results with a burn-in of 250,000 generations. Trees were then visu-
alised and support values combined using TreeGraph2 (Stover and Miiller, 2010).

Trees were rooted using a Microthamniales outgroup composed of:
« Trebouxia gigantea AJ249577.2

« Trebouxia arboricola SAG219-1a Z68705.1,

o Trebouxia jamesii Hp-MT1 AJs11357.1

o Trebouxia impressa AJ249576.1
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o Trebouxia corticola AJ249566.1

« Trebouxia higginsiae AJ249574.1.

3.3.2 SINGLE CELL GENOMICS
3.3.2.1 DNA EXTRACTION

Individual P, bursaria CCAP 1660/ 12 cells were removed from culture and washed three times in
a successive series of 10ul drops of sterile modified New Cereal Leaf-Prescott (NCL) medium to
minimise prokaryotic contamination from bacterial foodstocks in the culture media. Cells were
added to a final 10yl drop of sterile water before being added to a microcentrifuge tube.

DNA was then extracted using a cetrimonium bromide (CTAB) based method adapted from
(Winnepenninckx et al,, 1993). In brief, 748.5ul of CTAB extraction buffer (at 37°C and 100yl
beads (Sigma, 425600um; acid washed) was added and the tube vortexed for 5 minutes. The tube
was incubated for 5o minutes at 37°C, vortexed again for 5 minutes and incubated for 5o minutes
at 60°C. This was to ensure lysis of the endosymbiont’s chitinous cell wall. DNA was extracted
three times with phenol/chloroform/isoamylacohol (25:24:1, pH 8), washed with 70% ethanol
and re-suspended in 2.5ul TE (pH 8). Whole-genome amplification of purified genomic DNA
was performed using the multiple-displacement amplification based (MDA) Qiagen REPLI-g
Single Cell Kit. The REPLI-g amplified gDNA was purified using a QIAamp DNA mini kit and

eluted in 100yl elution buffer.

3.3.2.2 SEQUENCING

Five prepared libraries were put forward for sequencing (Pb-3, Pb-4, Pb-6, Pb-7 and Pb-8). Sam-
ples were multiplexed and were rapid sequenced in an Illumina HiSeq 2500 in 150 bp paired-end

mode.

3.3.2.3 READ PRE-PROCESSING

Trimmomatic (Bolger et al., 2014) was used to trim sequencing adapters (using sequences pro-
vided by Exeter Sequencing Service) via the ILLUMINACLIP setting. Reads were then quality

trimmed at a minimum average SLIDINGWINDOW quality thresholds of Qs and Q3o0.
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Qs and Q30 trimmed reads were then error corrected using BayesHammer (Nikolenko et al.,
2013 ) as built into the SPAdes assembler (Bankevich et al., 2012).

Trimmed and error corrected libraries were also then digitally normalised (Brown etal., 2012)
to a coverage of 20 and with a k-mer size of 25. Following this, k-mers were abundancy filtered
(Zhang et al,, 2014, 2015) using the Khmer package (Crusoe et al,, 2015).

3.3.2.4 ASSEMBLY

Assemblies were then generated using the following sets of data:
« Qs trimmed reads with error correction
« Q3o trimmed reads with error correction
The following assemblers were used:
« SPAdes assembler (Bankevich et al., 2012; Nurk et al., 2013)

« SPAdes assembler with “careful” thresholding (runs MismatchCorrector and minimises

the risk of indels)
« MEGAHIT (Lietal, 2015b)

« Platanus (Kajitani et al., 2014a)

3.3.2.5 ASSEMBLY ASSESSMENT

Assemblies were assessed and compared using the QUality ASsessment Tool for genome assem-
bly (QUAST) (Gurevich et al,, 2013) and key assembly metrics were compared (Ns0, N9o, con-

tig number and length and total assembly size).

3.3.2.6 CONTIG BINNING

Contigs were subsequently cut into 10kb fragments for consistency in binning and taxonomic
assignment and obviate the difficulties aligning very long sequences. Reads were then mapped
back onto the final assembly using Bowtie2 (Langmead and Salzberg, 2012)

Using the metagenomic binning tool, CONCOCT (Alnebergetal., 2014) contigs were binned

into clusters based on sequence composition and coverage features (derived from mapping data).

94



Coverage features were derived from a coverage and linkage table generated via CONCOCT
scripts built around BEDTools (Quinlan and Hall, 2010; Quinlan, 2014), Picard nd Samtools (Li
etal., 2009) based parsing of the bowtie2 alignment files. Clustering was conducted using a Gaus-
sian Mixture Model (GMM) (Bishop, 2006) and the number of clusters determined through
variational Bayesian inference (Corduneanu and Bishop, 2001).

All CONCOCT analyses were completed using a provided pre-configured Docker Image
(Merkel, 2014), a form of lightweight distributable process isolation container. This was down-
loaded from DockerHub (https://hub.docker.com/r/binpro/concoct/) on 2015-10-

25.

Additionally, the cut contigs were taxonomically assigned using TAX Assign (https: //github.
com/umerijaz/TAXAassign) against the NCBI nt database. The BLAST database was down-
loaded usingupdate _blastdb.plscript (http://www.ncbi.nlm.nih.gov/blast/docs/update_
blastdb.pl) and TAXAssign was run in parallel (using GNU parallel (Tange, 2011)) with a
maximum of 10 reference matches per contig a minimum percentage identity for assignment to
a given taxonomic level of 60, 70, 80, 95, 95, and 97 for Phylum, Class, Order, Family, Genus and
Species respectively.

CONCOCT clusters were then evaluated using the taxonomic assignments from TAXAssign
via the provided validate.pl script.

Finally, another attempt at taxonomic assignment using a custom ORF based pipeline was

attempted:

« ORFs with a minimum size of 300 were called using Tetrahymena and Universal encodings

from contigs over 500 bp
« OREFs were then clustered at 9o% identity using CD-HIT
« Diamond BLASTP searches were then done against the NR protein database

« Taxonomy was assigned to each contig based on the lowest common ancestor of all its

ORFs with hits (via the 1ca_mapper . sh accesory script in MEGAN)
« Contigs were then binned based on the identity of this taxonomic assignment:

- Endosymbiont contigs were all those assigned to Archaeplastida or a descendent

node.
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Host contigs were all those assigned to Aveolata or a descendent node.

Eukaryote was a super group containing all Eukaryote assigned contigs

Contaminant contigs were all those assigned as Bacterial

Viral contigs were all those assigned as Viral sequences.

3.3.2.7 VARIANT CALLING

A variant calling on the binned genomic contigs was attempted to assess the clonality of the en-
dosymbiont. Briefly, the top 10 longest contigs binned as “endosymbiont” were retrieved and Qs

trimmed, error corrected reads aligned to them using bowtie2 and output to BAM files for each

library. Library BAMs were then combined using samtools “mpileup” with a minimum mapQ
threshold of 5. All potential variants with a mapping depth of o were filtered out. SNPs were

called from this filtered mpileup file using a custom perl script designed for the the wheat genome

project (pers. comms. Hall, Neil). This SNP calling used a coverage cutoff of 10%.

Called SNPs were then visualised and statistics calculated using R.

3.3.3 ENDOSYMBIONT ELIMINATION

CCAP 1660/12 and Yad1g1N1 cultures in NCL media with were treated under the following
conditions to attempt to remove the endosymbiont. P. tetaurelia were used as a control culture
and was given the same treatment.

Paraquat was added at both 1mgul™ and 0.smgul™* concentrations. Cultures were maintained
under normal 12:12 lit:dark conditions at 15°C. Cultures were inspected daily using light mi-
croscopy and assessed for “bleaching” (i.e. loss of green appearance due to death of chlorophyll
bearing alga).

Cycloheximide was added to cultures at both 1mgul™ and 10mgul™*, again cultures were main-
tained under standard 12:12 lit:dark condition and 15°C. Cultures when looking clear were sub-
cultured and resuspended in NCL without cycloheximide.

Cultures were maintained in the dark without a lit phase at 15°C and inspected every 2 weeks
for clearing. This was to prevent providing too much light and further encouraging endosymbiont

growth.
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3.4 RESULTS

3.4.1 ITS2 PHYLOGENY

The ITS2 phylogeny demonstrates a clear and well supported relationship in all samples between
the CCAP 1660/12 and CCAP 1660/13 endosymbionts and the species described as M. reisseri
(see fig. 3.4.1). Additionally, the Yad1g1N endosymbiont is positively identified as C. variabilis.
This phylogeny in general is consistent with previous ITS2 phylogenies (Hoshina et al., 2010).

The ITS2 sequences of the CCAP 1660/ 12 culture demonstrated a variety of SNPs but never
more than a single SNP difference from the basal M. reisseri polytomy. These SNPs were grouped
into 3 categories: 4 different SNPs that were not found in the reverse complement and there-
fore represent likely sequencing error (1660-13-purified-K4, K8, K6 and K7), 3 different SNPs
that were found in both forward and reverse sequencing (1660-12-B6, 1660-12-19 and 1660-12-
18) and therefore represent either true diversity or PCR error and finally 1 SNP that was found in
forward and reverse sequencing and in two separate PCR reactions from different biological repli-
cates (1660-12-A7 and 1660-12-6). This featured a single base change from A to G (see fig. 3.4.2)
at position 126 in the full masked alignment. This SNP could be the result of intranuclear varia-
tion of the ITS2 in the multicopy rDNA array.

With the exception of these SNPs the sequences were identical to 3 from previously sequenced
M. reisseri endosymbionts, specifically CCAP 211/83 culture with P. bursaria Pbihost (AB206547.1),
the SW1-ZK symbiont from a P. bursaria PB-SW1 host (ABs506070.1), and TP-2008b from the
SAG241.80 culture (FM205851.1) (see fig. 3.4.1).

This polytomy as the sister clade to other Micractinium pusillum taxa was highly supported
in both ML and Bayesian phylogenies (91.3% of bootstraps and with a posterior probability of
1.00). There was similarly high support for the separate branching of these sequences from the
clade containing the C. variabilis and C. vulgaris endosymbionts (87.3%/1.00) and the existence
of a clade comprising these 3 endosymbionts to the exclusion of any Coccomyxa sequences was
well supported (89.3%/0.95).

Sequences from the Yad1g1N culture formed a clade with high support with other Chlorella

variabilis species including NC64A. This support the identification of the endosymbiont in this
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and Chlorella variabilis. Multiple clones forming a polytomy have been collapsed into groups
representing their biological replicate (i.e. 1660/12, 1660/12 A, 1660/12 B, 1660/13 Cul-

ture, 1660/13 Purified, and Yad1lglN). As can be observed all ITS2 sequences derived from
ulations. YadlglN ITS2 sequences branch, as expected, with the other C. variabilis strains

and CCAP 1660/13 endosymbionts are M. reisseri and despite a few SNPs form clonal pop-
including NC64A.

CCAP 1660/12 replicates, and purified and non-purified CCAP 1660/13 replicates form a
single polytomy with established M. reisseri sequences. This indicates that CCAP 1660/12

Figure 3.4.1: Combined MrBayes and RAXML phylogeny of all ITS2 sequences along with
2013). This phylogeny highlights a single example of each of the 4 major groups of P. bur-

numerous reference 1TS2 sequences from (Hoshina et al., 2010; Hoshina and Fujiwara,
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Figure 3.4.2: Alignment showing the sole SNP (at pos 126 in masked ITS2 alignment)

that is likely to represent true diversity. This indicates that the endosymbiont population
is largely clonal with a small marginally divergent sub-population that has possibly arisen
during the endosymbiosis itself. Alternatively, this represents intranuclear variation of the
ITS2 across the genomic copies.

Sample | Raw PE Reads | Q30 Trimmed PE Reads | Qs Trimmed PE Reads
Pb-3 3.523 - 107 1.951 - 107 2.737 + 107
Pb-4 3.228 - 107 2.606 - 107 3.035 - 107
Pb-6 3.291 - 107 2.437 + 107 2.962 - 107
Pb-7 4.023 - 107 2.642 - 107 3.404 - 107
Pb-8 3.869 - 107 2.613 - 107 3.246 - 107

Table 3.4.1: Summary of the number of surviving reads for Q5 and Q30 trims in each li-
brary

culture as C. variabilis 1N.

3.4.2 SINGLE CELL GENOMES
3.4.2.1 SEQUENCING AND PRE-PROCESSING

The number of remaining reads in each library after trimming at a minimum average sliding win-
dow quality threshold of 30 and § can be found in table 3.4.1.
After error correction the combined Q30 trimmed libraries comprised 1.218 - 10® paired end

reads. Similarly, the Qs trimmed libraries comprised 1.538 - 10® reads.

3.4.2.2 ASSEMBLY

Assemblies were compared using generated contigs and QUAST. Assembly statistics were tabu-
lated to allow comparison (table 3.4.2). As we are interested in recapitulating as much genomic
sequence as possible from this complex metagenome but not necessarily to generate “clean” pol-
ished closed genome assemblies, the fact that the Q30-SPAdes assembly generated both the longest
total assembly (over twice the size of the nearest assembly even when considering only contigs

over 1kbp) as well as the highest Nso and within 2 kbp of the longest contig of all assemblies
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Assembly textbfQ30-MegaHit | Q3o-Platanus | Q30-SPAdes-Careful | Q30-SPAdes | Qs-SPAdes
# contigs (> o bp) 131,057 25,789 73,698 127,976 94,384
# contigs (2 1000 bp) 14,960 486 13,301 21,808 12,614
Total length (> obp) 73,350,696 6,289,036 73,691,706 | 142,281,712 | 81,478,234
Total length (> 1000 bp) 28,064,499 2,191,750 52,704,642 | 105,269,748 | 58,162,565
# contigs 41,221 776 24,923 42,180 24,109
Largest contig 13847 78624 207156 207157 209,873
Total length 46,095,605 2,398,106 60,731,204 | 119,241,116 | 66,064,486
GC (%) 38.81 33.68 37.78 37.85 39.27
Nso 1,246 6,386 4,949 7,163 6,334
N7s 769 2,875 1,845 2,277 2,188
Lso 10,444 112 2,937 3,530 2,241
L7s 22,408 249 7,974 11,103 6,716

Table 3.4.2: Assembly statistics generated by an analysis of contigs using QUAST. Best
values are highlighted in bold. All statistics are based on contigs of size > s00bp, unless oth-
erwise noted (e.g. "# contigs (> obp)” and "Total length (> obp)" include all contigs).
N50 and N75 are the minimum contig length at which all contigs of that length are larger
comprise 50% and 75% of the total assembly size. Similarly, L50 and L75 are the number of
contigs that are summed for a given N50 and N75 (i.e. lower is better). The highest values
for each metric across the assemblies is emphasised in bold. This table shows that Q30 Pla-
tanus assembly generated the fewest and longest contigs overall, however the Q30-SPAdes
assembly generated the longest assembly by a considerable margin with the highest N50.

(generated by Qs-SPAdes) was compelling.

Generally, the SPAdes assemblers out-performed Platanus and MegaHit, likely due to be-
ing specifically designed for MDA based data. Note, that all assemblies were completed with
BayesHammer corrected reads so the difference in performance cannot be attributed to this as-
pect of the assembly pipeline.

Plots of assembly GC (fig. 3.4.3), cumulative length (fig. 3.4.4) further support Q30-SPAdes
as both the longest assembly but an assembly with similar GC profile to the other assemblies and
contig length distribution. Finally, the plot of X’s indicates that Q30-SPAdes isn't a dispropor-
tionately highly gapped assembly with low numbers of X’s found in its longest contigs. It should
be noted, however, that it does have a higher proportion of X’s in shorter contigs than the other
assemblies (fig. 3.4.5).

Therefore, Q30-SPAdes assembly was selected for further analysis and size filtered to exclude

all contigs shorter than 500 bp to give 21,090 contigs.
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Figure 3.4.3: GC densities of the compared genome assemblies. As expected all display a
clear peak around 30% representing that the majority of the assemblies by length contigs
are likely to be derived from the AT rich Paramecium bursaria host. The overall height of
the Q30-SPAdes peak reflects the relative size of this assembly. Peaks around s0% GC may
reflect endosymbiont contigs and possibly bacterial contamination.
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Figure 3.4.4: The cumulative length of contigs as a function of contig number. Again, this
plot reflects that Q30-SPAdes generated the largest assembly by a considerable margin. Pla-
tanus failed to recover many contigs found in other assemblies.
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Figure 3.4.5: The number of X (i.e. gap) in the assembled contigs as a function of their
length. This demonstrated that generally few Xs were assembled - however, it should be
noted that these are contigs and not assembly scaffolds and thus fewer Xs would be ex-
pected.

3.4.2.3 BINNING

From the selected Q30-SPAdes assembly, the 21,090 contigs were cut to 10kb fragments for de-
composition to generate 64,852 contigs. 18,277 of these 64,852 contigs were successfully given a
phylum level assignment, table 3.4.3.

Contigs were clustered into 34 unique clusters by Concoct. These taxonomic assignments
were then used to validate the 34 contig clusters generated in Concoct (visualised in fig. 3.4.6) by

considering them as the “ground-truth”.

Recall that Precision and Recall can be defined as follows: Precision — TPTFP and Recall =

TP
TP+FN

where TP are True Positives and FP and EN are False Positives and Negatives respectively

(see table 3.4.4 for an explanation of what these terms mean in the context of clustering).
CONCOCT assigned clusters were relatively precise (0.912608) therefore there were rela-

tively few FPi.e. the majority of clusters contained contigs with the same taxonomic assignments.
However, recall was relatively poor (0.542250) suggesting a fair number of FN i.e. contigs

with the same taxonomic assignments were not confined to a single cluster and were spread over
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Source Group | Number of Contigs Total Length  Phylum-Level Breakdown
Host 13 38,209 Intramacronucleata
- 2 140 Apicomplexa
- 1 163 Colponemidia
Endosymbiont 12 2,758 Chlorophyta
- 12 3,987 Streptophyta
- 1 1,674 Cyanobacteria
Bacterial Contamination 16,230 13,435,718 Proteobacteria
- 468 669,751 Firmicutes
- 329 135,928 Actinobacteria
- 128 68,337 Bacteroidetes/Chlorobi group
- 1 241 Deinococcus-Thermus
Eukaryotic Contamination 605 640,915 Ascomycota
- 380 206,354 Chordata
- 74 38,529 Arthropoda
- 12 3,623 Basidiomycota
- 7 2,150 Nematoda
- 1 61 Platyhelminthes
- 1 102 Cnidaria
Unknown 540 345,834 Unclassified

Table 3.4.3: Summary of taxonomic assignments via TAXAassign grouped into putative
“source groups” reflecting the most probable source of 10kb chunked contigs of that specific
taxonomic provenance. Of note, is the disproportionate number of contigs from contaminat-
ing sources. Specifically, bacteria such as Firmicutes and potential user contaminant in the
form of Chordate assigned contigs.

‘ - H Positive Negative
True Contigs with same taxonomic assignment Contigs with different taxonomic assignments
are assigned to the same cluster are assigned to different clusters
False || Contigs with different taxonomic assignments | Contigs with the same taxonomic assignment
are assigned to the same cluster are assigned to different clusters

Table 3.4.4: A contextual explanation of True and False Positive and Negatives in the con-
text of contig binning/clustering. Top left indicates what a True Positive (TP) means in

this context, bottom left a False Positive (FP). Similarly Top Right explains a True Negative
(TN) and Bottom Right a False Negative (FN)
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Figure 3.4.6: A low dimensional Principal Component representation of genomic contig
cluster assignments. Clusters are assigned via a Gaussian Mixture Model (GMM) based on
sequence compositional and coverage features as implemented in CONCOCT. Unfortunately,
as can be observed clusters are both poorly distinguished even in the dimensions of the 2
principal components (PCA1 and PCA2) and there are many clusters (34). This figure high-
lights that the single cell metagenome decomposition is poorly resolved and noisy.
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Bin Number of Contigs | Total Size (in bp)
Endosymbiont 782 1,767,324
Host 3,451 24,294,611
Other Eukaryotic 1,646 7,237,238
Bacterial and Unknown 15,211 26,342,475

Table 3.4.5: Results of the customised taxonomic binning, note the far less conservative
binning compared with TAXAssign. This analysis only consisted of contigs over s00bp in
length

main clusters.

The F," score for CONCOCT clustering was therefore 0.680389 under the assumption that
TAXAssign represents the ground-truth.

It is also worth noting that the 34 clusters had a relatively high level of mutual information
(Normalised Mutual Information of 0.332022 and a Rand Index of 0.499741) suggesting many
small but highly similar clusters were created. This level of similarity combined with the poor
recall suggests a greater number of clusters were inferred than was present in the taxonomic as-
signment ground-truth. This is likely due to the variational inference of cluster numbers being
partially reliant upon sequencing coverage features. As MDA is known to generate very uneven
coverage due to amplification biases this likely explains the erroneous clustering.

Therefore, clustering and TAXAssign binning methods were abandoned and the custom ORF

based pipeline bins (table 3.4.5) used for variant calling.

3.4.2.4 VARIANT CALLING

The variant calling demonstrated that the majority of potential variants were present in almost all
endosymbiont genomes (fig. 3.4.7). Indeed, the highest number of variants (> 75) were present

in 80 — 90% of endosymbionts.

3.4.3 ELIMINATION OF ENDOSYMBIONT

All elimination analyses focused on the P. bursaria-M. reisseri CCAP 1660/ 12 strain. After 1 week
tougml™* paraquat treated CCAP 1660/ 12 were partially bleached with few visible green M. reis-

seri present in the cells under light microscopy. Unfortunately, after 2 weeks, and despite regular

1r (precisionxrecall)
Fi=2x (precision+recall)
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Figure 3.4.7: Histogram summary of variant frequency in the longest 10 custom binned
“endosymbiont” contigs (total length 269.755bp). Variant frequency is the percentage of to-
tal chromosomes in the sample that share that variant and y axis shows the density (blue
line). The vertical dotted line indicates the mean of the sample and the heatmap shows
absolute counts in the histogram bins. This figure shows that the majority of variants are
present in the majority of endosymbiont cells within the host.

feeding, all CCAP 1660/ 12 treated with paraquat appeared to die with lysis of the Paramecium.

To assess whether this phenotype was due to a too great concentration of paraquat the ex-
periment was repeated at a lower concentration (1ugml ). Unfortunately, this led to the same
process of gradual bleaching of the CCAP 1660/12 cultures followed by their death. The differ-
ence being at the lower concentration this occurred over a 6 week time frame instead of 2 weeks.

A similar pattern was observed with both concentrations of cycloheximide where 1opgml™
treatment led to a reduction in endosymbiont abundance by 90% after 1 week followed promptly
by host death. The lower concentration 1pugml™" displayed the same pattern but over a 6 week
period.

Finally, with subculturing and feeding cultures maintained in constant darkness did lead to

gradual bleaching over 4-8 weeks. However, after 10 weeks the cultures died with no visible P.

bursaria cells.
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3.5 DiscussioN

3.5.1 CCAP1660/12 AND CCAP 1660/13 CONTAIN LARGELY CLONAL M. REISSERI SYMBIONTS

Phylogenetic analysis demonstrates that the endosymbiont present in the CCAP 1660/12 and
CCAP 1660/ 13 is M. reisseri. The ITS2 sequences derived from these two cultures across five dif-
ferent biological replicates (using both primer sets and with or without extra purification steps to
minimise contamination from any algae present in the media) were all identical (with the excep-
tion of individual SNPs) to 3 separate previously published M. reisseri ITS2 sequences. That this
formed a well supported clade with other Micractinium sequences and was clearly a distinct group-
ing from the other P. bursaria endosymbiotic green algal species further supports the identity of
the 1660/12 and 1660/ 13 endosymbionts as M. reisseri.

While 8 different SNPs were identified in the ITS2 sequences, these never occurred in the
same sequence and half are easily attributable to sequencing error as they couldn’t be recapitu-
lated in reverse sequencing of the same clone. Of the remaining 4 SNPs that were validated as not
being sequencing error, only 1 was discovered in separate PCR reactions and biological replicates
and thus can putatively be attributed to genuine biological diversity and not merely PCR error
(ITS2-6 and ITS2-A7, A to G transition). Therefore, on the basis of ITS2 sequences we cannot
say the endosymbionts in CCAP 1660/12 and 1660/ 13 form a clonal population. However, a sin-
gle SNP in the hypervariable ITS2 region represent very recent and minor divergence. The most
likely explanation is that this represents the emergence of a slightly modified line of endosym-
bionts within the clonal endosymbiont population of the CCAP 1660/ 12 culture or intranuclear
variation within a single clonal population. The distribution of SNP variants on endosymbiont
binned contigs supports this hypothesis. This is because the majority of SNPs were detected to
be present in 73% or more of endosymbiont chromosomes. Due to the uniformity of the ITS2 se-
quences there is no evidence of multi-strain photobiont co-habitation as described by (Hoshina,
2012).

It should be noted that the majority of ITS2 based studies make use of the secondary struc-
ture (predicted using tools such as RNAstructure (Mathews et al., 2004)) in inference (Schultz
and Wolf, 2009). This increases reliability of phylogenetic inference (Keller et al., 2008) allows

ITS2 to be used to distinguish higher taxonomic levels (Coleman, 2003 ), and plays a role in re-
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solving the thorny problem of species determination (Miiller et al., 2007). However, as the en-
dosymbiont species ITS2 secondary structures have already been extensively investigated (e.g.
(Hoshina and Imamura, 2008; Hoshina et al., 2010) ) and are generally better suited for analysis of
more divergent taxa, it was considered unnecessary to conduct structural analysis for taxonomic

analysis of these endosymbionts.

3.5.2 RELIABILITY OF CULTURE COLLECTIONS

One clear result and point worth raising is that contrary to previous studies (accession AB260896.1
(Hoshina and Imamura, 2008)) and CCAPs culture description CCAP 1660/13 does not con-
tain a Coccomyxa endosymbiont and contains an identical M. reisseri endosymbiont to the CCAP
1660/ 12 culture. Unfortunately, on communication with CCAP it emerged that the 1660/12
strains in their collection are no longer available and that CCAP 1660/13 had apparently become
overgrown by free-living Coccomyxa. Therefore it is likely that the previous finding of Coccomyxa
“endosymbionts” in CCAP 1660/13 (Hoshina and Imamura, 2008) represents accidental con-
tamination and sequencing of the free-living Coccomyxa also present in the culture.

The identical nature of the CCAP 1660/12 and CCAP 1660/13 endosymbioses is perhaps
not surprising when it is emphasised that these cultures were isolated from the same pond (Cam-
bridge, UK) by CCAP.

This demonstrates the necessity of not taking culture collection labels and taxonomic assign-
ments on faith. Itis critical to thoroughly determine that all received cultures actually contain the

organism.

3.5.3 MDA METAGENOMES ARE NON-TRIVIAL

The biases induced by MDA in single cell genomes are known to be formation of chimeric se-
quences and the amplification of undesired contaminant sequences (Binga et al., 2008). Addition-
ally, despite a theoretical basis that the amplification coverage bias should be random (Hosono
etal, 2003) there is evidence disputing this in practice (Ellegaard et al., 2013b). The magnitude
of this bias is related to the starting quantity of DNA (Ellegaard et al,, 2013a). Fortunately, there
does not appear to be any bias related to GC (Ellegaard et al,, 2013a). An increase in the number
of starting cells to the range of a few hundred to a few thousand cells has been observed to im-

prove amplification considerably (Ellegaard et al,, 2013a). Unfortunately, increasing the number
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of cells in the case of CCAP 1660/ 12 P. bursaria - M. reisseri system would likely compound issue
with bacterial contamination due to both a greater sample volume leading to greater inclusion of
food bacteria living in the media and an increase in the number of partially digested bacterial (and
viral) symbionts associated with the host.

SPAdes, by far, generates the best assemblies of complex MDA-based metagenomes of the as-
sembly tools trialled. This cannot be attributed to the effective read error correction implemented
as part of SPAdes via BayesHammer as all assemblies were completed on BayesHammer error cor-
rected reads. The performance of SPAdes is likely attributable to two factors: it is specifically de-
signed to handle MDA-based single cell assemblies and thus is highly tolerant of the coverage vari-
ability observed and secondly it is the lone genome assembler that effectively utilised paired-end
data during assembly. The vast majority of assemblers will only utilise this data in ad-hoc post-
assembly heuristic operations to improve contigs and scaffold the dataset. On the other hand,
SPAdes generates the assembly dBG using siamese rectangular graphs that incorporate both for-
ward and reverse reads and their respective insert. In future, it may be worth re-analysing this data
using other MDA-specific tools such as HyDA to assess their performance. Additionally, likeli-
hood/probabilistic methods such as CGAL (Rahman and Pachter, 2013) or ALE (Clark et al,,
2013) could be applied to the problem of genome assembly assessment instead of somewhat ar-
bitrary individual metrics.

The relative performance of Q30-SPAdes with and without the “careful” setting is interesting.
This setting minimises the risk of mismatch and indels found in the assembly. This led to assembly
with statistics relatively similar to that of the Q5-SPAdes assembly. However, on correspondence
with the developers of SPAdes it emerged that there was a bug in this setting in the version of the
assembler used within this study leading it to be highly conservative and discard many assembled
contigs that were unlikely to be mismatches.

Finally, the poor performance of CONCOCT suggests that coverage and composition are
not effective metrics by which to decompose an MDA-based metagenome into constituent “bins”.
The poor recall and high similarity indices between the clusters suggests that a greater number of
clusters were inferred than was present in the ground truth of the taxonomic assignments. This
likely represents the effect of biased amplification in MDA (therefore heterogeneous variable cov-

erage) on the variational inference of the number of clusters and the utility of the coverage feature
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in general. This means, therefore, in MDA-based metagenomes standard metagenomic binning
pipelines that are reliant on coverage metrics (even partially as in the case of CONCOCT) are
not effective.

This problem is somewhat symptomatic of the current state of the tool ecosystem for MDA-
based eukaryotic metagenomes. The few MDA-orientated analysis tools focus on the assembly of
bacterial systems whereas the majority of the metagenomic tools are based on features and metrics
such as coverage that are only consistent in conventional non-MDA bulk genomic studies. Ideally,

future research will improve the ease of analysis and assembly of datasets such as this.

3.5.4 METABOLIC CO-DEPENDENCE IN THE CCAP 1660/12 SYSTEM

Due to the repeated failure to create endosymbiont free Paramecium hosts from the CCAP 1660/12
cultures using 3 of the major accepted methodologies (cultivation in darkness (Karakashian, 1963 ),
paraquat (Hosoya et al,, 1995; Tanaka et al., 2002 or cycloheximide (Weis, 1984)) we are forced
to address the possibility that the Micractinium reisseri endosymbiont and P. bursaria system in
CCAP 1660/12 and CCAP 1660/13 cultures forms an obligate system. By some unidentified
mechanism, metabolic co-dependence may have become fixed in this culture.

Cycloheximide does partially inhibit host protein synthesis (Weis, 1984; Kodama et al., 2007;
Kodama and Fujishima, 2008, 2009) therefore it is possible that in the host strain found in the
CCAP 1660/ 12 culture that this partial inhibition is lethal to both host and endosymbiont. How-
ever, the failure of this method in conjunction with the paraquat, a herbicide which theoretically
should only affect the endosymbiont, and constant dark culturing suggests it is potentially the
loss of the endosymbiont that is lethal to the host cells (as adequate bacterial foodstocks were
included in these cultures).

The one major method that wasn’t attempted was the use of 3-(3,4-dichlorophenyl)-1,1-dimethlyura
(DCMU) an established blocker of photosystem II (van Gorkom, 1974). However, DCMU has
previously been found to be mildly toxic in P. bursaria, affecting the sexual reproduction system
(Miwa, 2009) therefore, this would have proven unlikely to show different results in either the
case of a particularly “sickly” host strain or obligate endosymbiosis.

This result indicates the presence ofkey differences between the current state of this endosym-
biosis and the previously studied C. variabilis endosymbiosis studied by (Kodama and Fujishima,

2014). Therefore, a comparative analysis of these systems could theoretically shed light on the
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mechanism by which metabolic co-dependence has become fixed in one system. Alternatively,
this difference may just reflect the nature of two different, independently acquired endosym-
bioses with different species and strains of both host and endosymbiont.

Another avenue of study that we did not investigate was that of isolation of endosymbiont
into free-living cultures (Achilles-Day and Day, 2013a). This would allow us to establish whether
green algae such as Micractinium that have obligate hosts are themselves obligate endosymbionts.
There is some evidence pointing towards this in nature, with the widespread predation of M. reis-
seri and C. variabilis by their specific PBCV virotypes as well as the relative paucity of natural
free-living strains of these species. To my knowledge, there has only been a single isolated and
characterised free-living M. reisseri (Abou-Shanab et al., 2014) example and no C. variabilis ex-
amples. However, this said, algae have previously been isolated from the CCAP 1660/ 13 culture
(Achilles-Day and Day, 2013a). We have demonstrated via ITS2 sequencing that the endosym-
bionts in CCAP 1660/13 are the same as those in CCAP 1660/12. Therefore, if these isolated
algae are actually endosymbionts (as supposed to the free-living Coccomyxa sp. that overgrew
the culture shortly after this study was published) then the M. reisseri endosymbiont is capable of
living without the host and is not an obligate endosymbiont despite P. bursaria being an obligate

host.

3.6 CONCLUSIONS

Therefore, on the basis of ITS2 sequencing the CCAP 1660/ 12 culture endosymbiont is a strain
of Micractinium reisseri. Additionally, the CCAP 1660/13 endosymbiont has been misclassified
as a strain Coccomyxa and is the same Micractinium reisseri species found in the CCAP 1660/12
culture. I have confirmed the Yadi1giN endosymbiont as being C. variabilis 1N. Despite poor
performance in genome assembly, the evidence of the genomes and ITS2 data seem to indicate
that this endosymbiont forms a clonal or near clonal population within the CCAP 1660/12 en-
dosymbiont. Similarly, on the basis of ITS2 diversity the Yadig1N culture contains a clonal 1N
endosymbiont population. At a minimum, a single strain of M. reisseri comprises the sole green
algal endosymbiont in the CCAP 1660/12 and 1660/ 13 cultures although there may be intranu-
clear variation of the ITS2 or it may be actively evolving as evidenced by a small divergent sub-

population.
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Finally, the Micractinium reisseri endosymbiont in cultures CCAP 1660/12 CCAP 1660/13
has potentially become metabolically co-dependent with the host. The host appears incapable
of survival without the endosymbiont, therefore, it is important to attempt to identify the differ-
ences between the demonstrably facultative relationship between the Japanese Yad1g1N strains
(used in (Kodama and Fujishima, 2014)) and the putatively obligate CCAP 1660/ 12. Identify-
ing these differences may pinpoint the mechanism by which metabolic co-dependence becomes

fixed in P. bursaria - green algal endosymbioses.
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"Look on my works, ye Mighty, and despair!”

- Percy Bysshe Shelley: Ozymandias, 1818

Transcriptomic analysis of the Paramecium

bursaria and Micractinium reisseri endosymbiosis

4.1 INTRODUCTION

The Paramecium bursaria-Micractinium reisseri (PbMr) endosymbiosis conveys phototrophy (Karakashian,
1963 ), numerous photobiological traits (e.g. (Berk etal., 1991; Saji and Oosawa, 1974; Nakajima
and Nakaoka, 1989; Niess et al., 1982b; Iwatsuki and Naitoh, 1988; Summerer et al., 2009), par-
tially reviewed in (Sommaruga and Sonntag, 2009)) and its establishment and maintenance is
dependent on photosynthetic activity and enigmatic light-induced factors (Karakashian, 1963;
Hosoya et al., 1995; Kodama et al., 2007; Kodama and Fujishima, 2014). Therefore, a relatively
unbiased global metatranscriptomic profile of host and endosymbiont in both lit and dark con-
ditions would potentially identify key transcripts which play a role in the establishment, mainte-

nance, and characteristics of this endosymbiosis.
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“Dual-RNAseq” is a form of transcriptomics which characterises transcripts in a small num-
ber of defined organisms simultaneously (Westermann et al., 2012). It has proven an effective
method in several studies investigating host-chloroplast interactions (Nowack et al., 2011; Jig-
gins et al,, 2013; Xiang et al,, 2015), and host-pathogen systems (Tierney et al., 2012; Kawahara
et al,, 2012; Jones et al,, 2014; Hayden et al,, 2014). It differentiates itself from both standard
metatranscriptomics, such as those common in microbial ecology (Poretsky et al., 2005; Aliaga
Goltsman et al,, 2014), by being conducted on samples of known, or mostly known composition,
and from classical transcriptomics by not depending on axenic samples.

Paramecium bursaria and its green algal endosymbionts form a system well-posed for “dual-
RNAseq” analysis. Firstly, there is a plethora of literature on the physiology and behaviour of
host and endosymbiont, both together and individually (e.g. (Iwatsuki and Naitoh, 1988), see
(Kato and Imamura, 2009b) and the Introductory Chapter for more details), presenting a key re-
source by which results can be contextualised. Additionally, transcriptomic analysis has proven
feasible in reasonably close relatives of both host (Arnaiz et al., 2010; Kolisko et al., 2014) and
endosymbiont (Guarnieri et al., 2011; Rowe et al., 2014; Bashan et al,, 2015). Even more promis-
ingly, there has been an analysis of the host-endosymbiont system (although in a different strain:
Yad1g1N) (Kodama et al.,, 2014). Unfortunately, this study focused only on the expression pat-
tern of the host alone with and without its endosymbiont and discarded endosymbiont derived
data during analysis.

This said, the PbMr system does also present some severe difficulties in terms of its transcrip-
tomic tractability. Specifically, the system is highly genomically and transcriptomically complex
with P. bursaria’s ciliate nuclear dimorphism and high order polyploidy (Raikov, 1995), there is
sexual reproduction in both host (Jennings, 1939) and endosymbiont species (Blanc et al,, 2010),
and the system has alarge range of GC biases (Kodama et al., 2014). Therefore, care must be taken
to optimise sequencing, and assembly methods, to mitigate these complications.

These difficulties are compounded by the lack of available reference genomes for either Parame-
cium bursaria or Micractinium reisseri and thus necessitating de novo transcriptome assembly. How-
ever, the utility of sequenced genomes from divergent ciliate species (i.e. Tetrahymena thermophila
(Eisen et al., 2006), Paramecium tetaurelia (Aury et al,, 2006) and Paramecium caudatum (Mc-

Grathetal, 2014)) and endosymbiotic green algae Chlorella variabilisNC64A (Blancetal., 2010)
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and Coccomyxa subellipsoidea C-169 (Blanc et al,, 2012) (see fig. 1.2.3 in the Introductory Chap-
ter and fig. 3.4.1 in Chapter 1 for respective phylogenetic context of these genomes) as references
for assembly was investigated. It should also be noted that the existing Paramecium bursaria (Ko-
dama et al., 2014), Paramecium duboscqui (Kolisko et al., 2014) and Chlorella vulgaris (Guarnieri
etal, 2011) transcriptomes mentioned above were successfully recapitulated de novo (without a
reference genome).

The mixotrophic nature of the host Paramecium (Dolan, 1992) means there are partially di-
gested bacterial prey species, as well as numerous associated bacteria (Gortz and Fokin, 2009;
Fokin and Gortz, 2009; Schrallhammer and Schweikert, 2009) and viruses (Van Etten etal., 1983)
which all present potentially obfuscating sources of contamination in the analysis of host-endosymbiont
interaction. Therefore, it is key to effective analysis of this system to develop methods that min-
imise the effects of contamination at all stages of analysis. To address this, we investigated meth-
ods to reduce contamination during library preparation such as washing steps, cell picking and
single cell sequencing techniques; methods to screen and/or filter sequenced libraries for con-
taminants before inclusion in assembly and methods to effectively sort assembled transcripts into
bins relating to their likely originating organisms (i.e. “host”, “food” or “endosymbiont” derived).

To this end, bulk RNAseq libraries from cultured PbMr were sequenced using 76 bp paired-
end reads and the Illumina Gene Analyzer II platform taking care to minimise contamination by
filtering and washing cultures and carefully assessing culture health to maximise the number of
healthy PbMr sequenced. Unfortunately, due to limitations in the maintainable culture density
of the Paramecium bursaria CCAP 1660/12 and thus the quantity of extractable mRNA it was
necessary to pool all day and night replicates into a single pair of day and night libraries.

While this provided sufficient material for sequencing it precluded accurate inference of dif-
ferential expression between day or night by masking the biological replicates (Auer and Doerge,
2010). We, therefore, also sequenced a set of 3 (followed later by an additional 5) dark and 3 light
biological replicates using single-cell RNAseq (sc-RNAseq) methods. This also allowed a finer-
grain control over cell selection and potentially a method to reduce culture based contamination.

While reasonably new, sc-RNAseq has shown a lot of promise in well characterised systems
such as human cell cultures (Bengtsson et al., 2005; Shalek et al,, 2013) and Saccharomyces cere-

visiae (Lipson et al., 2009) and there are high expectations of their utility for “dual-RNAseq”

115§



Contamination
Screening

Taxonomic Analysis GC density analysis

Read pre-processing

Y / \ Y

Trimming Read Clustering

Optimisation Error Correction K-mer normalisation (ParKour)
> Assembly <€
.............................. )
— o~

de novo Assemblers
(Trinity, Bridger, SOAPdenovo-Trans, Referenced Assemblers
Velvet, IDBA-*, TransAbyss)

L~

2 V\A

Assembly
Assessment

f%

ORF Calling

o

Transcript Binning

Hyper-
parameter
Optimisation

Assembly Merging

Custom BLAST
Binning

Phylogeny Creation
(Dendrogenous)

Manual Curation of Supervised Learning
Training and Cross- Binning
Validation datasets PERP (Arboretum)

TAXAssign Binning

A A 4
N Binning Comparison |«
Classifier Selection via

Cross-Validation
Re-call ORFs with encoding
appropriate to assigned bin

v

Binned Transcripts

Figure 4.1.1: A flowchart summarising the full analysis and transcript binning of the PbMr
single cell transcriptome data. Key stages are indicated by square boxes and blue colouring,
individual analyses are shown in rounded square boxes and iterative parameter optimisation

steps are shown in circles and highlighted with red-dotted dependency arrows.

(Westermann et al,, 2012). sc-RNAseq addresses the key difficulties of analysing unculturable

or poorly culturable organisms (Murray et al., 2012) and investigating cell-cell heterogeneity in
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expression patterns (Raj and van Oudenaarden, 2008; Shalek et al,, 2013). Uninvestigated this
heterogeneity (either from biological and/or genomic variance or just the stochasticity of gene
expression) can lead to a Yule-Simpson effect (Yule, 1903; Simpson, 1951), where the false amal-
gamation of distinct expression patterns in previously cryptic but distinct cellular subpopulations
can generate a spurious expression pattern contrary to either subpopulation.

There are a range of possible sc-RNAseq methods, however, we used Qiagen’s Repli-G Whole
Transcriptome Amplification (WTA) MDA-based kit. This was due to MDA being well estab-
lished and characterised in single cell genomics e.g. (Spits et al., 2006), having a simple method-
ology not requiring additional equipment, and claims suggesting that MDA is more successful
at recovering transcripts from a wide range of abundance levels than other methods i.e. recovers
many lowly expressed transcripts'. Unfortunately, despite the publication of empirical compar-
isons of single cell transcriptomic methods (Wu etal., 2014), Qiagen’s Repli-G WTA MDA-based
kit has yet to be directly assessed relative to other approaches and thus its performance has not
been independently verified. Briefly, this method involves the ligation of reverse transcribed cD-
NAs using oligo-dT primers (after lysis and removal of gDNA) before MDA by a 29 DNA poly-
merase with a 5-3” exonuclease proofreading activity (Korfhage et al., 2015) (reducing error-rate
of amplification to 9.5 - 10~ ¢ errors per nucleotide (Paez et al., 2004) compared with 10™* to 105
for Taq (Tindall and Kunkel, 1988; Eckert and Kunkel, 1990)).

Unfortunately, despite its utility sc-cRNAseq generates a new set of difficulties. First and fore-
most, there has only been a single published use of sc-RNAseq, to my knowledge, in non-model
unicellular eukaryotes. This study by (Kolisko et al., 2014), briefly addressed the issues of bias,
contamination and gene discovery effectiveness in a set of model and non-model eukaryotes
and constitutes an important proof-of-concept. However, it also used a different sc-RNAseq ap-
proach (SMRT), focused on single organisms, and didn’t address, in-depth, the optimal way to
process, assemble and utilise single cell datasets from protists. While some work has been done
investigating the optimal pre-processing of bulk RNAseq datasets, e.g. (Macmanes and Eisen,
2013; Macmanes, 2015), the effect of different trims and error correction on sc-RNAseq has
yet to be characterised. There are also some early indications that cryptic bacterial contamina-

tion from samples and/or reagents in sc-RNAseq can be particularly problematic (Kolisko et al.,

'https://www.qiagen.com/gb/shop/sample-technologies/rna-sample-technologies/
total-rna/repli-g-wta-single-cell-kit/asof2015/08/25
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2014). This further increases the importance of library screening and post-assembly transcript

binning.

4.2 AiMs

Therefore, this chapter will investigate the optimal use of 2nd generation bulk and sc-RNAseq li-
braries in characterising a complex reference-free system. Specifically, it will look at the screening
of RNAseq libraries for contamination before assembly, the optimal preprocessing (partitioning,
trimming, digital normalisation and error correction), assembler and assembly parameters (in-
cluding the utility of divergent reference genomes from related species) in recapitulation of host
and endosymbiont transcripts. Finally, I will address the problem of the attribution of recovered

transcripts into their appropriate likely originating organism.

4.3 METHODS

4.3.1 SAMPLE PREPARATION AND SEQUENCING
4.3.1.1 BULK TRANSCRIPTOME RNA PREPARATION

For bulk transcriptomic analyses CCAP 1660/ 12 cells were harvested in a way to minimise con-
tamination from bacterial prey species in the culture. Aliquots consisting of ~ 10° cells were
strained through 40 pm sieves, filtered on 10 ym nylon filters, before finally being filtered on 8 pm
TETP polycarbonate filters using a low-pressure filtration pump. Collected samples were either
immediately quick-frozen inliquid nitrogen for storage (—20 °C for short-term storage and —80 °C
for longer storage) or harvested by centrifugation. In order to investigate the two main metabolic
states of the symbiosis (i.e. under light conditions during active photosynthesis and in the dark
when no photosynthesis is taking place) samples were extracted s hours into the light and dark
phase of the 12:12 hour day-night cycle.

To ensure extracted RNA was representative of healthy and interacting host and endosym-
bionts care was taken to minimise the number of dead/dying cells from which RNA was extracted.
In order to do this, a subsample was taken from each culture during the process of harvesting and
scored for dead/dying cells. Cell assays were formed by taking 1-2 ml of each harvest cell pellet

and fixed using 40 pl Lugol’s solution (0.5 g I, and 1g KClin 8.5ml of MilliQ water). Dead/dying
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cells were identified as broken or puckered cells and counted using light microscopy. Samples
containing >10% dead/dying cells were discarded and no RNA extracted from them.

In order to lyse collected samples, cells were washed from the filter or the pellet was resus-
pended in 1ml TriReagent (Sigma) heated to 60 °C. Cells were vortexed with sterile 300 pm glass-
beads for 15 s, incubated at room temperature for 10 min, vortexed for 15 s, quick-frozen in liquid
nitrogen and stored at —20 °C before further processing. Samples were defrosted, vortexed for
15 s, placed in a heat-block set to 60 °C for 10 minutes while continuing to be vortexed, removed
from heating and vortexed again for 15 s. RNA was extracted by adding 0.2 pl of chloroform to the
glass-bead-trizol-sample solution, shaking for 15 s, incubating for 5 minutes at room temperature
and centrifuging at 12,000g for 15 min at 4 °C. The upper-phase was then transferred to an RNase-
free 1.5 ml tube and an equal volume (~o0.5 ml) of isopropanol was added before shaking for 15 s.
The isolated RNA was then incubated at —20 °C for 10 min (up to several hours) before being
collected as a pellet using a centrifuge at 10,000g for 10 min at 4 °C (supernatant was discarded).
The RNA pellet was then washed with 1 ml of 75% ethanol and centrifuged twice at 10,000g for
10 minutes at 4 °C with the supernatant being discarded after each centrifugation. The pellet
was then dried before being resuspended in 100 pl of RNase-free water. The RNA was cleaned
turther using the Qiagen RNeasy clean-up kit before being assessed for quality using ND-1000

(NanoDrop) and BioAnalyzer (Agilent).

4.3.1.2 SINGLE CELL RNA PREPARATION

For single cell transcriptomics, a “cell-picking” approach was used in which P. bursaria cells (from
the CCAP1660/ 12 culture) were inspected on an inverted light microscope before being picked
using an orally aspirated drawn-glass Pasteur pipette (Garcia-Cuetos et al,, 2012). In order to
minimise contamination from food bacteria present in the media these picked cells were washed
3 times by serial transfer to 10 pl droplets of sterile NCL media. The washed cell was then trans-
terred to a 10 pl droplet of sterile water. Cells were picked 5 hours into both the lit and dark phase
of the 12:12 hour day-night cycle identically to the bulk analyses. As cells were picked individ-
ually, health status could be exhaustively assessed during picking and therefore the subsampling
and scoring method used to check the status of cells in bulk preparations was unnecessary.
cDNA was generated and amplified using the MDA-based Qiagen REPLI-g WTA Single Cell

Kit (Korfhage etal., 2015) with additional cell disruption steps. Specifically, cells were transferred
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from their respective 10 pl droplets of sterile water to a PCR tube containing 6 pl water and 4 pl
lysis buffer. Due to the robust chitin cell walls of M. reisseri (Kapaun and Reisser, 1995) it was
important to ensure thorough cell lysis. Therefore, samples underwent mechanical disruption by
bead beating (Sigma, 425-600 pm, acid-washed) followed by freeze-thaw via submersion in liquid
nitrogen for 5 s. In order to compare disruption methods, extractions and amplifications were also
conducted using just lysis buffer, bead beating and vortexing (i.e. without freeze-thaw), and just
the lysis buffer. Samples were then quantified using a ND-1000 (NanoDrop) and as extraction
methods produced near identical DNA concentrations the maximal disruptive method of freeze-
thaw, beat beating, vortexing and lysis buffer described above was used for further purification
and library preparation. The samples were then vortexed for 1 min before a gDNA removal step.

mRNA was selectively amplified and reverse transcribed to cDNA using poly-A selection (i.e.
oligo-dT) primers to prevent amplifying ribosomal sequences. Prior to MDA by a 29 DNA poly-
merase cDNA were ligated into long fragments due to lower MDA efficiency for short fragments
(Korfhage et al., 2015). This reduces size-dependent amplification bias but could potentially lead
to the creation of chimeric transcripts in which paired-reads cross boundaries of adjacently ligated
cDNA transcripts.

The amplified cDNA was then purified using a QIAamp DNA mini kit and eluted in 100 pl
elution buffer. This kit operates by binding the DNA to a QIAmp membrane in a spin column fol-
lowed by successive washing steps to remove impurities such as remaining proteins and cations.
This lead to the creation of 3 dark cDNA libraries (Dark1-2, Darki-3, Darki-5) and 3 light li-
braries (Light1-9, Light1-10, Light1-11).

Due to low quantities of eukaryote identifiable reads in the initial 3 sequenced single cell dark
libraries a set of additional single cell extractions were conducted. These followed the same pro-
tocol as above but also featured an additional final PCR-based screening of synthesised cDNA
using primers specific for Paramecium Bug22 sequence. Bug22 is a highly conserved ciliary pro-
tein found in a large number of organisms including the ciliates (Smith et al., 2005b; Laligne
etal, 2010), green algae (Keller et al,, 2005; Laligne et al,, 2010; Meng et al,, 2014), higher plants
(Hodges et al., 2011), and animals (Mendes Maia et al., 2014). Therefore, this was used as a
marker for Paramecium derived cDNA. Primers used were Bug22BFWD and Bug22BREV (ta-

ble 4.3.1) under standard PCR conditions.

120



Primer Sequence
Bug22BFW GCATTCTAGACCAATCTGGCITTCTGTCAA
Bug22BREV | GCATTTCGAATTTGAGGCTCTAAATCITCITCTCA

Table 4.3.1: Sequences of the Bug22 primers used to screen cDNA

Five (Dark2-2, Darka-3, Dark2-6, Dark2-7, Dark2-8) samples with bands of appropriate size

were then taken forward for library preparation and sequencing.

4.3.1.3 LIBRARY PREPARATION

For both bulk and single cell preparations each cDNA sample was fragmented in 130 pl 1xTE
buffer on the Covaris E220 with a target size of 225bp (duty factor of 10%, 200 cycles per burst,
peak incident power of 175, 200 s at 7 °C). Fragment sizes were checked on a BioAnalyzer (Agi-
lent) 7500 DNA chip. cDNA was then concentrated using a GeneRead kit column with a elution
in 35 ul. Fragmentation step was then repeated 3 times (110's) until majority of cDNA in each
library was between 200-250 bp.

cDNA ends were then end-repaired, adenylated and adapters ligated using the NEXTFlex
(Bioo scientific) sequencing kit according to the manufacturer’s instructions and using NEBNext
(New England Biolabs) indices. Also following the NEXTFlexkit instructions, MgNa bead purifi-
cation was done before and after PCR amplification using NEBNext reagents. Finally, prepared
libraries were size selected using a Blue Pippin machine at a size selection of 350 bp (range 315-
385bp).

A final bioanalyzer step was conducted with individual library concentrations ranging from

0.66-4.09 nmol.

4.3.1.4 SEQUENCING

The bulk day and night library were paired-end (PE) 76 bp sequenced using an Illumina Genome
Analyzer II by the Exeter University Sequencing Service. The two libraries were sequenced on
separate flowcells (Bulk-Light, Bulk-Dark).

Single cell libraries were paired-end 150 bp using an Illumina HiSeq 2500 by Exeter Sequenc-
ing Service. 3 dark (Dark1-2, Dark1-3, Darki1-5 ) and 3 light (Light1-9, Light1-10, Light1-11) sam-
ples were multiplexed sequenced on a single flowcell lane. The 5 additional dark samples (Darka-

2, Dark2-3, Dark2-6, Dark2-7, Dark2-8) were multiplexed and sequenced on a single flowcell lane
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in a separate sequencing run.

4.3.2 LIBRARY CONTAMINATION SCREENING
4.3.2.1 TAXONOMIC ANALYSIS

Sequenced libraries were initially screened using the standard metrics implemented in the FastQC
to check for standard sequencing issues such as flowcell defects, library degradation, and adapter
read-through (Andrews, 2015).

To further investigate potential contamination, a taxonomic profile and GC% probability den-
sity was determined for each library.

The former was conducted using a custom tool dubbed “DueyDrop” which functions as fol-
lows. Briefly, for each library s batches of 10,000 PE reads were sampled using the reservoir sam-
pler (Vitter, 1985) implemented in Heng Li’s seqtk library (Li, 2015). While 5 batches of 10,000
reads should be equivalent to 50,000 random samples by using batches and changing the random
seed any potential problems from poor randomisation implementation was achieved. Further-
more, the batches allowed easy comparison of the consistency of taxonomic profiles. These ran-
domly sampled reads were subsequently aligned to NCBI'’s Protein NR RefSeq database (Pruitt
et al,, 2007) using the efficient short-read optimised BLASTX implementation of DIAMOND
(Buchfink et al,, 2015) (at a expectation of e %) and top hits for each read retained. Gene identi-
fiers (GI) were extracted from these tops hits and queried against a local copy of the NCBI taxon-
omy database (Federhen, 2012) to recover a hit taxonomic lineage for each read that aligned to
a sequence within NR database. These lineages were then interactively tallied at several different
taxonomic levels (e.g. domain level - eukaryote vs bacteria, or lower level - viridiplantae vs ciliate)
and variances calculated. Results were then tabulated and libraries compared to assess whether
any libraries appeared aberrant. This whole analysis was repeated for both untrimmed reads and
reads quality trimmed to a high quality threshold of an average Q30 over a sliding window of size
4 using Trimmomatic (Bolger et al., 2014) to assess the impact trimming has on this profiling.
Taxonomic profiles were additionally visualised in Krona (Ondov et al., 2011) using the tabular
BLAST hit import functionality.

Scripts used to conduct this analysis are available in the following github repository:

https://github.com/fmaguire/dueydrop
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To determine how representative profiles created using small subsamples consisting of <1%
of reads are to profiles of entire libraries a similar analysis was done using full libraries. All libraries
were pre-trimmed at the harsh threshold of the Q30 sliding window discussed above. The forward
read from each trimmed library was used used in a similar DIAMOND based BLASTX search
however all hits were retained. Multiple hits for a given read were collapsed into a single lowest
common ancestor (LCA) using the LCA algorithm (Gabow and Tarjan, 1985) implemented in
MEGAN (via the “mtools” package) (Huson et al., 2007; El Hadidi et al,, 2013 ). LCA were then
summarised and tabulated using a script in the CGAT collections (Lca2table.py) (Simsetal.,
2014) and visualised using Krona (Ondov et al,, 2011).

On the basis of the resultant taxonomic profiles libraries were excluded or included from
downstream preprocessing and assembly. The libraries selected for inclusion during these analy-

ses are referred to as the “taxonomically filtered” single cell libraries.

4.3.2.2 GC DENSITY ESTIMATES

Each library’s GC% probability density was estimated from per-read GC proportions (calculated
using awk (Aho et al,, 1987)) via Kernel Density Estimation (KDE) (Rosenblatt, 1956; Parzen,
1962) (implemented in the seaborn package (Waskom et al,, 2015)). This involved a standard
Gaussian kernel and a bandwith determined by “Scott’s normal reference rule” (Scott, 1979).

Again this analysis was repeated with both untrimmed and Q30 trimmed reads.

4.3.3 OPTIMISING READ PRE-PROCESSING
4.3.3.1 TRIMMING

To investigate the optimal trimming parameters for single cell libraries, random subsamples were
trimmed using a range minimum quality thresholds and then the effects investigated by mapping
against 3 draft de novo transcriptomes.

Specifically, 5000 PE reads were randomly sampled without replacement from each of the raw
FASTQ libraries using the streaming reservoir sampling (Vitter, 1985 ) algorithm implemented in
Heng Li’s seqtk C library (Li, 2015). To guarantee that pairing was maintained the same random
seed was used for the left and right read of each library and incremented between libraries.

Trimmomatic (Bolger et al., 2014) was run on these samples with adapter clipping (ILLUMI-

NACLIP) using sequencing service provided fasta file of adapters, a maximum mismatch count
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of 2, a palindromic clip threshold of Q35 and a simple clip threshold of Q15, a sliding window
quality trim of size 4 and average window quality thresholds of Qo, Q2, Qs, Qi0, Q15, Q20,
Q25, Q30, Q35, and Qgo. Finally, a minimum length of 40 bp filtering criteria was used after
other trimming operations had been applied.

The trimmed samples were then mapped to three different de novo draft transcriptome assem-
blies using bowtie2 (Langmead and Salzberg, 2012 ) with minimum and maximum insert sizes of
37bp and 1161 bp (derived from library preparation fragment size distribution and histograms of
mapped insert sizes for untrimmed reads against bulk reference).

These 3 draft assemblies were a “baseline” bulk RNASeq transcriptome reference consisting
of a Trinity (Haasetal., 2013 ) assembly of the light and dark bulk libraries preprocessed to remove
low quality bases (<Q20) and adapters using FastQ-MCF (Aronesty, 2013); and two Trinity
assemblies of the taxonomically filtered sc-RNASeq libraries previously trimmed at an average
window quality threshold of Qs and Q3o respectively.

For each library and set of quality thresholds the total number of concordantly mapping (i.e.
forward and reverse PE reads mapped to transcripts within the range of the insert sizes used) reads
was recorded. This heuristic measure was chosen because the number of concordantly mapping
reads generally correlates with the assembly quality (MacManes, 2014). The proportion of surviv-
ing reads which mapped was not used as a metric because this could be spuriously inflated in cases
where a particular set of trimming parameters has caused the majority of reads to be discarded.

The number of concordantly mapping reads were tallied and plotted in seaborn for each li-
brary, reference transcriptome and set of trimming parameters. The shape of this line was then
used to determine the optimal quality threshold to use for further assembly.

Scripts used to conduct this are available in my thesis scripts github repository: https://
github.com/fmaguire/thesis_scripts/tree/master/chapter_2_assembly_and_

binning/trimming optimisation

4.3.3.2 GC PARTITIONING OF READS

To assess the utility of pre-assembly read partitioning an unsupervised clustering tool was created:
Paired Arrangement of Reads via K-means On Unlabelled Reads (parKour). This C++ tool im-
plements a fast and efficient k-means clustering of reads based on the dual features of GC% in

forward and reverse paired reads and was designed to exploit the wildly differing GC biases of P.
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bursaria and M. reisseri.

ParKour operates as follows:

1. Parse user input of paired FASTQ files (i.e. a file of forward and file of reverse reads) and

specified number of clusters.

2. Simultaneously iterate over the pair of FASTQ files calculating the GC% for each pair of
reads. GC% tallies are then loaded into an Armadillo 2 by n matrix (Sanderson, 2010)

where 7 is the total number of PE reads.

3. Bradley-Fayyad k-means (Bradley and Bradley, 1998) clustering as implemented in the

MLPACK library (Curtin et al,, 2013)

4. Re-read the two input FASTQs assigning them to output files based on the assigned cluster

of the pair.

GNUplot (Williams et al., 2010) was used to visualise classification and cluster assignment.
This approach was attempted using a range of expected clusters from 2 to s.
Scripts used to conduct this are available in a github repository: https://github.com/

fmaguire/parKour

4.3.3.3 ERROR CORRECTION

The effect of error correction on assemblies involving single cell libraries was assessed by apply-
ing two different error correction algorithms to the screened, trimmed reads before assembly.
These were a Bayeshammer (Nikolenko et al,, 2013 ) implemented as part of the SPAdes genome
assembler (Bankevich et al,, 2012) and optimised for MDA-based single cell genomic data, and
SEECER (Le et al., 2013) which is optimised for RNAseq (but not necessarily sc-RNAseq data).
The impact of each of these error correction algorithms at the read level was assessed as well as
their subsequent impact on downstream assembly metrics, particularly RSEM-EVAL likelihood

score as will be expanded upon below in the description of assembly assessment.

4.3.3.4 k-MER NORMALISATION AND TRIMMING

Taxonomically screened sc-RNAseq libraries trimmed at a minimum sliding window quality thresh-
old of Q30 and bulk libraries were k-mer normalised and trimmed using the Khmer package (Cru-

soe etal., 2015)
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Specifically, reads were interleaved (Déring et al., 2008) and then digitally normalised using
diginorm (Brown et al.,, 2012) with a k-mer size and coverage cut-off of 20. Low abundance and
likely erroneous k-mers were then filtered relative to the read coverage i.e. low abundance k-mers
were removed from high coverage reads but would be more likely to be retained for low coverage
reads (Zhang et al,, 2015, 2014).

Filtered data was then assembled using Trinity (with minimum k-mer coverage of 2) and the
subsequent assembly partitioned into transcript families in Khmer (Pell et al,, 2012).

The final assemblies were then compared to un-normalised and k-mer trimmed assemblies

(see section 4.3.4.1 for details).

4.3.4 ASSEMBLY

Referenced and de novo assemblies were attempted using a range of assemblers and assembly pa-
rameters.

Firstly, trimmed bulk and taxonomically filtered single cell libraries were mapped to Chlorella
NC64A, Coccomyxa C169, Tetrahymena thermophila and Paramecium caudatum macronuclear (MAC)
genomes. The former pair being the closest available genomes to the endosymbiont and the latter
to the host. Mapping was done using the TopHatz spliced aligner (Kim et al., 2013 ) against the
genomes and was supplemented with and without annotated ORF information (in the form of
gtf). GTF files were generated from best available gene annotations in the form of GFF files us-
ing gffread (part of cufflinks). Cufflinks (Trapnell et al,, 2011) was then used to extract isoforms
from the spliced alignments.

For de novo assembly, assemblies were conducted using following assemblers with default

settings unless specified otherwise:
« Trinity v2.0.6 (Grabherr et al,, 2011) with and without a minimum k-mer coverage of 2
« SOAPdenovo-Trans vi.03 (Xie et al., 2014 ) with k-mer sizes of 20, 32, 64, and 8o
« TransAbyss vi.5.3 (Robertson et al.,, 2010) with k-mer sizes 20, 32, and 64

« Velvet v1.2.10 (Zerbino and Birney, 2008) and Oases vo.2.08 (Schulz et al,, 2012) with

k-mer size of 21, a minimum k-mer coverage of 2 and a minimum transcript length of 100.

« Iterative de Bruijn Graph Assembler (IDBA)-tran (Peng et al., 2010, 2012, 2013)
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« IDBA-MTP (Leung et al,, 2014), IDBA-UD (Peng et al,, 2012), IDBA-MT (Leung et al,,

2013 ) workflow.

« Bridger (Changetal, 2015).

Trinity was used for all further downstream assembly optimisation due to its performance
and consistency. Specifically, a minimum k-mer coverage of 1-3 were attempted as well as various
combinations of libraries (i.e. bulk and screened sc-RNAseq libraries) and also sequencing data
from Kodama’s previously published P. bursaria bulk RNAseq analysis (Kodama and Fujishima,
2014).

To assess the utility of combining assemblies as discussed in (Nakasugi et al., 2014), the best
assemblies from Bridger and Trinity (as assessed below) were combined using the Evidential-
Gene tr2aacds pipeline (Gilbert, 2013 ). Additionally, the best assemblies from all assemblers
that ran to completion i.e. Bridger, Trinity, SOAPdenovo-Trans, Transabyss and IDBA-tran were

also combined and assessed.

4.3.4.1 ASSEMBLY ASSESSMENT

Resultant assemblies were compared using standard assembly statistics (e.g. contigs number and
size, bases assembled) as implemented in the trinitystats.pl perl script supplied with Trin-
ity (Haas et al,, 2013) and TransRate (Smith-unna et al,, 2015). Additionally, the reference free
probabilistic assembly assessment RSEM-EVAL package (part of DETONATE) (Lietal,, 2014)

was used to estimate likelihood scores for various completed assemblies.

4.3.4.2 ORF CALLING

ORFs were called from assembled transcripts using TransDecoder (Haas et al., 2013) with a min-
imum protein size of 100 amino acid residues.

TransDecoder operates as follows:

1. All ORFs are found in transcripts by identification of sequences between a start codon
and an in-frame stop codon. Partial ORFs are also identified as sequences between the §’

transcript terminus and a stop codon or a start codon and the 3’ transcript terminus.

2. The top 500 longest of these ORFs are selected and used to train a reading-frame specific

sth-order Markov model.
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3. All of the ORFs are then scored for each reading frame as a sum of the per-base log odd
scores (log probability of a given base and reading frame given its preceding s bases nor-

malised by the relative frequency of that nucleotide across all transcripts).
4. The highest scoring reading frame is retained as a candidate.

5. Any of the initial ORFs with homology to proteins in PFAM and Swissprot (as determined

by HMMR and BLASTP (minimum e-value of 1e7%)) are also retained.

Paramecium uses an alternative genetic code in which two universal stop codons (UAA, UAG)
are reassigned to glutamine. For the purposes of initial BLAST based binning ORFs were called
and translated using both universal encoding and this alternative code. However, for the later
BLAST-based bin accuracy verification purposes and subsequent automated phylogeny based
binning all ORFs were initially only called using the alternative ciliate encoding. The ciliate en-
coding was used instead of universal because spuriously extended transcripts were considered
favourable to falsely truncated ones. This greatly reduced redundancy in the later binning analy-

Ses.

4.3.5 TRANSCRIPT BINNING
4.3.5.1 INITIAL BLAST BASED BINS

Initially, 10,000 randomly chosen, translated transcripts from an earlier iteration of the assembly
process were binned into their predicted source - Host (H), Endosymbiont (E), Food (F) and
Unknown (U).

Each of the assembled transcripts were used as a BLASTP query against a database consisting
of the following predicted proteomes: Chlorella NC64A, Chlamydomonas reinhardtii, Coccomyxa
C169, Paramecium tetaurelia, Tetrahymena thermophila, Arabidopsis thaliana, Homo sapiens (help-
ing to identify contamination), Saccharomyces cerevisiae, Schizosaccharomyces pombe, Bacillus cereus
ATCC 14579, Escherichia coli §36, Escherichia coli O157 H-7, Salmonella typhimurium LT2 and Es-
cherichia coli K-12 (the last five genome datasets helping to identify food bacterial genes). Then

initial bins were determined as follows:

« Endosymbiont (E): Transcript’s highest scoring BLAST hit at an expectation of < ¢~5°

was to Coccomyxa, Chlamydomonas or Chlorella. Or transcript’s highest scoring hit at e~ >°
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was one of those species and the longest likely coding region in the transcript was using the

universal codon table.

Host (H): Transcript’s highest hits at < e° were to Paramecium tetaurelia or Tetrahymena
thermophila. Orhighest hit at e~ >° was one of those species and longest likely coding region

was using the Tetrahymena codon table.

Food (F): Transcript’s highest scoring BLAST hit at an expectation of < e was to one

2° was one of

of the E. coli species or Salmonella. Or transcript’s highest scoring hit at e~
those species and the longest likely coding region in the transcript was using the universal

codon table.

Unknown (U): highest scoring hits to Arabidopsis, Homo sapiens, Saccharomyces or Schizosac-

charomyces or any sequence not fitting into the above categories.

The accuracy of the BLAST based binning was then determined by generating phylogenies us-

ing the method described below. Resultant phylogenies were then manually parsed and assessed

for phylogenetic congruence with their bin. For example, do host binned sequences predomi-

nantly branch with other ciliate sequences? Do endosymbiont binned sequences mainly branch

with Archaeplastida sequences?

4.3.5.2 AUTOMATED PHYLOGENY GENERATION PIPELINE - DENDROGENOUS

To rapidly generate phylogenies an established lab tree generation pipeline, known as “Darren’s

Orchard” (Richards et al., 2009) was modified and ported to python3 from perls. This new

pipeline “Dendrogenous” takes in a multi-fasta set of inputs and a set of genomes to search against.

For each input sequence:

. The user specified genome database is queried using BLASTP.

. The results are parsed and a fasta file of putative homologues is created, with inputs that

have fewer than a specified number of hits (default of 5 ) ejected.

. A multiple sequence alignment (MSA) is created from this fasta using Kalign (chosen for

its speed) (Lassmann et al., 2009).
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4. This MSA is then masked automatically to remove ambiguous sites using TrimAL (Capella-
Gutiérrez et al., 2009) and masked alignments with fewer than a specified number of sites

(default of 30) are ejected from the pipeline.

5. A rapid maximum-likelihood phylogenetic tree is generated using FastTree2 (Price et al,,

2010).

6. Finally, encoded taxonomic information is recovered from the “cider” database of the orig-

inal “Darren’s Orchard” pipeline and the trees are named with full species names.

The two key improvements are that of full and efficient parallelisation of the tree generation pro-
cess (see fig. 4.3.1) and increased use of filestreams to pass data between pipeline stages. This
latter modification reduces costly and slow file reading and writing operations.

In the process of creating this modified phylogenetic pipeline I upgraded the general purpose
python phylogenetic toolkit ETE (Huerta-Cepas et al,, 2010) to support python3. As ETE is
an open source project I submitted these changes to the maintainer and they have subsequently
been merged into the master. These changes compose a significant proportion of the latest major
release version of this toolkit (https://github.com/jhcepas/ete/pull/i0s).

40 genomes covering the diversity of the tree of life, with a particular focus on green algal
and ciliate representatives, were selected for this phylogenetic generation: Arabidopsis thaliana,
Chlamydomonas reinhardtii, Ostreococcus tauri, Micromonas pusilla CCMP1545, Chlorella variabilis
NC64A Chlorella vulgaris C-169, Physcomitrella patens, Saccharomyces cerevisiae S288C, Neurospora
crassa OR74A, Homo sapiens, Mus musculus, Dictyostelium discoideum, Paramecium caudatum, Parame-
cium tetraurelia, Tetrahymena thermophila macronucleus, Oxytricha trifallax, Toxoplasma gondii, Guil-
lardia theta, Bigelowiella natans, Emiliania huxleyi CCMP1516, Aureococcus anophagefferens, Ec-
tocarpus siliculosus, Schizosaccharomyces pombe, Bacillus cereus ATCC 14579, Escherichia coli str.
K-12 substr. MG165ss, Escherichia coli O157 Hy str. Sakai, Salmonella enterica subsp. enterica
serovar Typhi str. CT18, Amycolatopsis mediterranei U32, Aquifex aeolicus VFs, Borrelia burgdor-
feri B31, Chlamydophila pneumoniae CWLo29, Chlorobium tepidum TLS, Deinococcus radiodurans
Rz, Caulobacter crescentus CB1s, Sulfolobus islandicus M.14.25, Nanoarchaeum equitans King-M,
Haloferax mediterranei ATCC 33500, Methanococcus maripaludis Sz, and Cenarchaeum symbiosum

A.
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Figure 4.3.1: A explanatory plot showing 3 different possible architectures for a tree gener-
ation pipeline. The least efficient design (the serial architecture) makes no use of multipro-
cessing and takes significantly longer to complete execution. Stagewise parallelism (e.g. all
alignments for each input sequence are run side-by-side and masking begins once the last
sequence has finished alignment) is moderately more efficient but a single slow stage for
one input sequence can hold up the whole pipeline and leave resources idle. Additionally,

by running many of the same type of process at the same time, each with similar resource
requirements, the risk of hardware bottlenecking is increased compared to a more hetero-
geneous load. Finally, fully parallel runs each input sequence through the pipeline stage-by-
stage separately from all other inputs to the pipeline. This architecture proves most efficient,
preventing blocking and allowing effective use of computational resources.

4.3.5.3 AUTOMATED PHYLOGENETIC TRANSCRIPT BINNING - ARBORETUM

In order to automate phylogeny based transcript binning the 10,000 manually verified phyloge-
netic bins from the initial BLAST based binning and analysis were used as a training dataset for
supervised classification. The cardinalities of each label in this training set was relatively balanced
(ie. all within the same order of magnitude) 1975 endosymbiont phylogenies, 2600 host, 3456
food, and 1969 unknown.

The supervised classification was implemented in a script called “Arboretum”. For each phy-

logeny “Arboretum” generates a vector using the following algorithm:

1. Parses the phylogeny and identifies the k (default of 10) closest (based on branch length)

leaf nodes to the seed transcript used to generate the phylogeny.
2. Avector (Z) of length p (where p is the number of class labels) is o-initialised.
3. Then, for each of these k closest leaves:

« 'The species is queried taxonomically using the NCBI taxonomy local database im-

plemented in the ETE toolkit.
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« A set of user defined look-up filters is used to identify what “type” of species this is
in terms of the defined class labels. For example, sequences from ciliates could be

defined as “host-like” and those from Archaeplastida as “endosymbiont-like” etc.

« The reciprocal phylogenetic distance between this leaf node and the seed transcript
node is then added to corresponding index in Z. Therefore, if this leaf has been de-
termined as having the same type as class label 2 in the look-up filters (for example)

this reciprocal distance will be added to z,.

4. The magnitude of each dimension in vector Z then represents the summed reciprocal dis-
tance between the node containing the transcript sequence and all of the nearest branches

that have been identified as being indicative of a certain class.

Concretely, we can define our class labels as:
| = {“endosymbiont”, “host”, “food/bacterial”, “unknown”}

Noting that in practice they will represented as integers using a 1-of-n encoding. Similarly, ais a

k 4 11ength vector consisting of the transcript node and the k nearest terminal nodes to it:
d = {transcript node, node,, ...node; }

If y(x, y) is a function which returns the phylogenetic distance between two nodes x and y,
¥(x) is a function which represents the ‘look-up’ filters (i.e. if terminal node x is an Archaeplastida
species ¥ (x) will return the “endosymbiont”label), and §;; is the Kronecker delta®, then for a given

phylogeny the length p vector (Z) is defined as follows:

k 1
Zizl <‘y(ao7a,—) * S‘I/(ui)7lo>

k 1
Zi=1 <y(a°7ai) * S‘/’(“i)»lp)
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These vectors are then stacked to form matrix X with dimensions t X g where tis the number
of phylogenies and g is the number of class labels.

Training data was visualised using Radial Visualisation (RadViz) (Hoffman etal., 1997; Fayyad
etal, 2001). RadViz is a form of radial co-ordinate visualisation that non-linearly maps a set of N-
dimensional points onto a plane for easy 2D visualisation. This mapping operates on the physical
principle of “springs” anchored evenly around a unit circle with “spring” stiffness determined by
the normalised o — 1 value of that dimension for that point. Each point therefore rests at the point
of mechanical equilibrium between the “springs” (Novakova, Lenka and Stepankova, 2006).

1,000 vectors from this training set were held out to form the test set and all models were
then trained using s-fold cross-validation (CV) on the remaining 9,000 training vectors. We
evaluated Support Vector Machines (SVMs) with both linear and radial basis function (RBF)
kernels (Vapnik and Lerner, 1963 ), naive Bayes, k-neighbours, Decision Trees (DT) (Quinlan,
1986), DTs ensembles in a Random Forests (Breiman, 2001) and Extremely Randomised Trees
(ExtraTrees) (Geurts et al,, 2006), adaptively boosted (AdaBoost) DTs (Freund and Schapire,
1997), Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA). Mod-
els were trained and hyperparameters were optimised using Bayesian optimisation implemented
in the HPOIib library (Eggensperger et al., 2013; Komer et al., 2014) over the CV-folds. Finally,
each model was assessed using the held out test set and performance was evaluated by inspection
of label-wise classification reports containing various metrics e.g. label F1-scores and confusion
matrices.

The best performing model and hyperparameters were then used to classify the remaining

unlabelled phylogenies.

4.3.5.4 TAXAASSIGN COMPARISON

To assess the performance of supervised learning and phylogeny based system (Arboretum) de-
scribed above a stand-alone sequence identity binning tool TAX Assign (https: //github. com/
umerijaz/TAXAassign) was run against the 70,605 CDS sequences.

TAXAssign queried each CDS against the entire NCBI nt database. The nt BLAST database
was downloaded usingupdateblastdb.plscript (http://www.ncbi.nlm.nih.gov/blast/
docs/update_blastdb.pl) and TAXAssign ran BLASTN in parallel (using GNU parallel

(Tange, 2011)) with a maximum of 10 reference matches per CDS and a minimum necessary
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percentage identity for assignment to a given taxonomic level of 60, 70, 80, 95, 95, and 97 for
Phylum, Class, Order, Family, Genus and Species respectively.

Results were then tabulated and compared with the Dendrogenous-Arboretum assignments.

4.4 RESULTS

4.4.1 LIBRARY CONTAMINATION SCREENING

Libraries were screened for inclusion in assemblies by inspection of their taxonomic profiles (see
table 4.4.1 and table 4.4.2) as determined by DueyDrop and their GC% probability densities (via
KDE).

The GC density estimates of the single cell libraries show a clear bimodal GC density with a
high 70GC% peak (fig. 4.4.1) in all dark single cell libraries. With the exception of Dark1-2 and
Dark2-3 this high GC peak is a greater density than the expected peak 30-50GC% (from known
GC% found in genomes of sequenced relatives of both host and endosymbiont).

When these KDE are compared to the densities estimated from the Q2o trimmed bulk reads
(bottom right pane in fig. 4.4.1) and raw bulk RNAseq reads from (Kodama et al., 2014) (see
fig. 4.4.2) it is apparent that this high GC% peak is likely originating from a high GC% bacterial
contaminant in the Dark single cell libraries.

One other observation when comparing the bulk RNAseq analyses to the single cell libraries
is that the main GC peak is slightly lower in the bulk (and Kodama dataset), around 30GC% ver-
sus 45-50GC%. This possibly indicates a greater proportion of reads deriving from the low GC%
Paramecium bursaria host and fewer from the 50GC% endosymbiont in bulk libraries relative to
single cell libraries.

By comparing the results of the KDE GC analysis with and without read trimming it is appar-
ent that trimming of reads makes nearly no difference in the density estimates. The KDE of Q30
sliding window trimmed single cell reads in fig. 4.4.3 is nearly identical to that of the raw reads
fig. 4.4.1.

The taxonomic profiles of single cell (table 4.4.1) and bulk libraries (table 4.4.2) generated

by DueyDrop are summarised in the tables below. It is readily apparent that Darki-3, Darki-s,
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Figure 4.4.1: Probability densities of per-read GC proportions for the raw data (apart from
pre-trimmed bulk explained previously) from each sequenced library. Densities were derived
using Kernel Density Estimation implemented in Seaborn. Dark 1 (Dark1-2, Dark1-3, and
Dark1-5) and Light 1 (Light1-9, Light1-10, Light1-11) were sc-RNAseq from the first round
of SCTs sampled during the mid-dark and light culture phases. Similarly, Dark 2 (Dark2-2,
Dark2-3, Dark2-6, Dark2-7, Dark2-8) were the libraries sampled in the dark from the sec-
ond round of SCT. Bulkl and Bulk2 are the bulk RNAseq libraries sequenced under lit and
dark conditions. The bulk and single cell light libraries demonstrate similar shaped distribu-
tions although the bulk has a greater proportion of low GC% reads potentially representing
more Paramecium derived data. All single cell dark libraries demonstrate a bimodal density
with up to the majority of reads deriving from an unknown high 70% GC population. The
dark single cell libraries exhibiting a relatively larger peak at 70% GC than at 40-50%GC (i.e.
Dark1-3, Dark1-5, Dark2-2, Dark2-7) were the same libraries which were identified as poten-
tially contaminated in taxonomic screening (see table 4.4.1).

Darka2-2, and Dark2-7 display an aberrantly low number of reads aligning to known alveolate (or
even eukaryote) sequences. Forward and reverse reads within a library display similar profiles
with a slightly lower proportion of hits in the reverse reads. This can likely be attributed to the
lower read quality found in reverse reads relative to forward reads in paired-end Illumina sequenc-
ing.

The bulk libraries demonstrate a very low level of hits compared to single cell libraries (see
table 4.4.2), to the point where if they were single cell libraries they would be taxonomically ex-
cluded. However, it should be noted that the bulk libraries were sequenced on a Gene Analyzer II

and are on average half the length of single cell reads (76 bp vs 150 bp). Due to the difficulty align-
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Figure 4.4.2: Probability density of the per-read GC proportion for 6 raw libraries derived
from (Kodama et al., 2014) transcriptome analysis of a different P. bursaria species (Yadlg)
with and without its Chlorella variabilis 1IN endosymbiont. Individual libraries are indicated in
the key using their DDBJ accession. This dataset displays densities relatively similar to the
bulk RNAseq conducted in this project - “Trimmed Bulk Libraries” in fig. 4.4.1.
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Figure 4.4.3: Probability densities of per-read GC proportions for trimmed reads. To ensure
probability densities estimated in fig. 4.4.1 weren't biased by low quality ambiguous reads
the same analysis was repeated using reads trimmed using a sliding window approach with

a stringent average quality threshold of Q30. In all cases the densities produced appear near
identical to the analysis of the raw data.

ing short reads to references the difference between libraries may be attributable to this alone.
Additionally, the vast majority of the lower number of hits do align to eukaryote (and alveolate)

taxa consistent with an non-contaminated library.

136



SCT Library || PE | Eukaryote Bacteria Alveolate Viridiplantae Total Hits
Light1-9 Ri | 51.89+/-0.45 | 9.37+/-0.26 | 25.15 +/-0.71 | 7.45 +/-0.33 69.49 +/-0.37
R2 | s1.75+/-0.25 | 8.82+/-0.24 | 24.85+/-0.56 | 7.49 +/- 0.21 68.75 +/-0.29
Light1-10 Ri1 | 46.35+/-0.56 | 15.72+/-0.46 | 22.96 +/-0.24 | 6.94 +/-0.26 68.73 +/-0.30
Rz | 46.12+/-0.83 | 15.14+/-0.48 | 23.13 +/-0.38 | 6.99 +/-0.37 68.73 +/-0.30
Lighti-11 R1i | §8.28+/-0.47 | 3.62+/-0.12 | 28.68 +/-0.43 | 8.20+/-0.40 71.38 +/- 0.49
R2 | 57.74+/-0.27 | 3.50+/-0.10 | 28.23 +/-0.36 | 8.41 +/-0.31 70.42 +/- 0.20
Darki-2 Ri1 | 28.64+/-0.51 | 22.88+/-0.61 | 12.23 +/-0.28 | 4.93 +/-0.19 60.31 +/-0.49
R2 | 28.29+/-0.24 | 21.06+/-0.21 | 12.13 +/-0.28 | 4.87 +/-0.34 57.65 +/-0.35
Darki-3 Ri | 9.48+/-0.43 | 25.07+/-0.42 | 2.15+/-0.13 | 2.60+/-0.27 41.43 +/-0.68
Rz | 8.89+/-0.19 | 23.114/-0.52 | 2.13+/-0.16 | 2.45+/-0.18 38.50+/-0.46
Darki1-s R1 | 5.56+/-0.19 | 23.99+/-0.44 | 1.07+/-0.07 | 2.89+/-0.11 36.72 +/-0.33
R2 | 494+/-0.21 | 21.75+4/-0.53 | 1.02+/-0.11 | 2.33 +/-0.17 33.06 +/-0.52
Dark2-2 Ri | 12.32+/-0.25 | 9.81+/-0.19 | 3.73+/-0.16 | 4.33 +/-0.17 27.65 +/-0.47
R2 | 11.53+/-0.15 | 9.00+/-0.17 | 3.67+/-0.22 | 3.74+/-0.12 25.71 +/-0.39
Dark2-3 Ri1 | 32.07+/-0.31 | 7.43 +/-0.15 12.81 +/-0.21 | 471 +/-0.21 48.42+/-0.53
Rz | 32.47+/-0.24 | 6.68+/-0.21 13.11+/-0.43 | 4.58 +/-0.12 47.92 +/-0.28
Dark2-6 R1 | 24.11+/-0.28 | 8.5§5+/-0.11 | 9.04+/-0.35 | §.27+/-0.15 41.69 +/-0.45
R2 | 22.89+/-0.55 | 7.44+/-0.17 | 8.74+/-0.49 | 4.36+/-0.24 38.85+/-0.58
Dark2-7 R1 | 9.96+/-0.24 | 16.89+/-0.27 | 4.22+/-0.24 | 2.83+/-0.17 37.06 +/- 0.40
Rz | 8.77+/-0.18 | 15.00+/-0.43 | 3.94+/-0.14 | 2.16+/-0.11 32.86 +/-0.29
Dark2-8 Ri1 | 28.24+/-0.48 | 4.45+/-0.13 12.00 +/-0.32 | 4.69 +/- 0.06 40.50 +/-0.37
R2 | 28.22+/-0.47 | 4.30+/-0.22 11.98+/-0.37 | 4.32+/-0.24 40.05 +/-0.22

Table 4.4.1: Taxonomic profiles of raw single cell libraries generated using “DueyDrop".
All values are percentage of reads mapping to that category +/- the standard deviation be-
tween sample replicates. The analysis was conducted for both forward and reverse reads
from each library (indicated as R1 and R2 in the paired-end (PE) column). Libraries high-
lighted in bold were those excluded from subsequent analysis on the basis of their very low
numbers of reads identifiable as eukaryotic (or specifically alveolate or Archaeplastida). All
forward and reverse read pairs display similar profiles to one another suggesting the problem
of “MDA chimeras” may be minor.

Bulk Library | PE | Eukaryote Bacteria Alveolate Viridiplantae || Total Hits

Light R1 | 9.66+/-1.55 | 0.18+/-0.13 | 6.28 +/-1.41 | 0.86+/-0.3 10.10 +/- 1.48
R2 | 9.62+/-0.81 | 0.26+/-0.09 | 6.58 +/-0.36 | 1.04+/-0.41 10.16 +/-0.95

Dark R1 | 4.90+/-0.78 | 0.36+/-0.11 | 3.14+/-0.58 | 0.50+/-0.16 5.40 +/-0.93
R2 | 5.50+/-1.25 | 0.22+/-0.19 | 3.82+/-0.81 | 0.50+/-0.12 6.02+/-1.22

Table 4.4.2: Taxonomic profile of the two trimmed (Q20) bulk transcriptome libraries gen-
erated using “DueyDrop”. All values are the percentage of reads mapping to that taxonomic
category +/- the standard deviation between sampling replicates. The analysis was con-
ducted for both forward and reverse reads from each library (indicated as R1 and R2 in the
paired-end (PE) column). Overall only a very small number of bulk reads could be assigned
to any taxonomic class by “DueyDrop”.

To identify the likely source of the high GC% contamination and to assess how representa-
tive the taxonomic profiling of small < 1% random subsamples of reads where to full scale anal-
yses Krona was used to create interactive hierarchical plots of the taxonomic profiles® From this,

Rhizobia species are the most prevalent high GC% species found in the libraries with this high

70GC% peak in the KDE plots and therefore are the most likely source of this particular aspect

3Accessible at http://finlaymagui.re/dueydrop_analysis
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Figure 4.4.4: Krona visualisation of taxonomic profiles of two representative single cell li-
braries (Dark1-2, Dark2-2) that were excluded from further analysis due to aberrant profiles
(typically large proportion of reads being assigned to Bacteria (yellow) than Eukaryota (red)).
Note that nearly 50% of each library is identified as bacterial.

Therefore, small random subsamples are representative of the full library and read-level taxo-

nomic assignment can be used to screen single cell libraries for contamination.

4.4.2 READ PRE-PROCESSING
4.4.2.1 TRIMMING OPTIMISATION

The optimal trimming threshold was determined by a combination of read mapping statistics
against 3 preliminary reference assemblies as well as the impact on resultant de novo assemblies at
that threshold.

A rapid decrease in the number of concordantly mapping PE reads (i.e. within insert distance
of one another) was observed above a Q30 quality threshold. This proves true regardless of the
reference assembly being mapped to (see fig. 4.4.7). Q30 relative to Q20 appears to induce a very
slight decrease in total number of mapping reads but not drastically so.

Additionally, naive assemblies in Trinity of taxonomically screened single cell libraries at dif-
ferent sliding window quality threshold trims of Qs, Q20, and Q30 (table 4.4.3) were created.

These show that more permissive trims (Qs and Q20) lead to a greater number of assembled
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Figure 4.4.5: Krona visualisation of the taxonomic profiles of representative RNAseq li-
braries (Bulkl, Dark2-3, and Light1-9) that were retained in the analysis after taxonomic
screening. The key thing this figure shows is that in retained libraries the vast majority of
reads were identified as eukaryotic (red) in origin.

bases and transcripts but the likelihood of these assemblies are also lower than that generated
using the more conservative Q3o trim. However, it should be noted that the difference in the
number and size of assembled transcripts at different thresholds was less than was found using

different assemblers and assembly parameters.

Trim Threshold | Number of Transcripts | Bases Assembled | Assembly Likelihood (— log)
Qs 112,182 52,511,552 —3.168 * 10"
Q20 107,955 50,809,686 —3.01§ * 10™°
Q3o 99,784 47,313,963 —2.832 % 10"

Table 4.4.3: Comparison of Trinity assemblies of taxonomically screened single cells reads
(no bulk reads) at 3 different sliding window minimum average quality trimming thresholds.
Trimming largely does not cause a major difference between assemblies in terms of number
of contigs recovered or overall assembly likelihoods. Harsher (Q30) trims result in slightly
smaller but slightly more likely assemblies than permissive trims (Q5).
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Taxonomic Profiles from Subsamples Compared To Full Analyses

10 more

z
z
2

Light1-11 Subsample
Oligohymenopng

Dark2-7 Subsample

Figure 4.4.6: Comparison of taxonomic profiles derived from small < 1% random subsam-
ples of libraries compared to profiles generated using the full library. Lightl-11 and Dark2-5
are used as representative examples as they display the trends common for all single cell li-
braries. All subsamples demonstrated taxonomic profiles with relatively similar proportions
to full analyses. For example, in the Lightl-11 subsample of reads with hits the proportion
of eukaryote to Bacteria was 87:4 % vs 85:4% of the root for the full analysis. Similarly
the ratios for Dark2-7 shown eukaryote to bacteria are 26:54 for full analysis and 28:46 for
subsample. The key difference is the assignment of a greater proportion of reads to inter-
mediate taxonomic levels in the full analyses due to the difference in resolution of multiple
hits per read. Principally, the full library analyses retain all hits and assign level based on a
lowest common ancestor algorithm whereas the subsample analysis just uses the top hit.
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Comparison of Trimming Parameters on Mapping
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Figure 4.4.7: Assessment of the optimal minimum average quality threshold in Trimmo-
matic’s sliding window (size 4) trim. Plots display the number of concordantly mapping
reads (i.e. the forward and reverse read map to assembly at a distance of approximately
their insert) at a range of different trimming thresholds. 5000 randomly sampled PE reads
from each single cell library are mapped against 3 different reference assemblies. The key
finding is above a threshold of Q30 there is a huge decrease in the number of mapping
reads.
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Library || Number of raw PE Reads | Number of Q30 trimmed PE Reads
Darki-2 || 6.460 * 107 3.355 * 10°
Dark2-3 || 2.243 * 107 1.478 * 107
Dark2-6 || 2.431 * 107 1.443 * 107
Dark2-8 || 2.761 * 107 1.866 * 107
Light1-9 || 1.524 * 107 1.382 * 107
Lightl—lo 1.614 * 107 1.478 * 107
Light1-11 || 1.474 * 107 1.334 * 107

Table 4.4.4: Summary of the library size of the taxonomically selected single cell libraries
before and after trimming at a minimum average SLIDINGWINDOW quality threshold of
Q30. Of interest, Dark1-2 was generally of poor quality and thus was disproportionately min-
imised by trimming. Additionally, the two bulk RNAseq libraries were trimmed at Q20 in
FastQ-MCF resulting in total library sizes of 2.458 * 107 and 2.779 * 107 respectively.

Therefore, due to increasing the assembly likelihood while only very marginally decreasing
the number of contigs and mapping reads relative to more permissive trims Q30 was determined
to be the optimal trimming threshold. It can be considered from this data that Q30 forms a max-

imum feasible stringency for trimming.

4.4.2.2 GC PARTITIONING

GC partitioning was conducted on Q30 trimmed reads using k-means clustering as implemented
in the parKour tool described above to attempt to remove GC% rich contamination from single
cell libraries.

The two different clustering schemes attempted using 2 and 3 target clusters. Additionally,
both clustering schemes were also run with an initial overclustering factor of 3 i.e. parKour origi-
nally found 6 and 12 clusters and then merged them to produce the target 2 and 3 clusters respec-
tively. Therefore, over-clustering made a minimal effect on cluster centroids and read assignment.

Unfortunately, as might have been foreseen, the resultant assemblies from individual read
clusters displayed high levels of fragmentation regardless of the clustering regime used. For exam-
ple, in the case of the 2 cluster (without over-clustering) and subsequent individual Trinity-based
assemblies resulted in 268,806 transcripts of marginally shorter average length than the equiva-
lent un-pre-partitioned assembly (99,784 transcripts).

The same pattern, consistent with assembly fragmentation, was observed when only dark sin-
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Clustering Scheme Centroids Number of Reads Assigned
2 (0.6674, 0.6177) 57.3M
(0.4557,0.4393) 81.6M
2 (over-clustering) (0.6672, o.6168) 57.7M
(0.4555,0.4392) 81.2M
3 (0.5363,0.5092) 44.0M
(0.6924, 0.6394) 43.3M
(0.4231,0.4096) 51.6M
3 (over-clustering) || (0.5365,0.5090) 43.9M
(0.6921, 0.6396) 43.6M
(0.4235, 0.4098) 51.7M

Table 4.4.5: Final cluster centroids and number of reads assigned to each cluster in parK-
our using various run settings. Centroids are the mid-point of each cluster, therefore in the
2 cluster scheme “parKour” identified one cluster of reads centred around 66.74% GC for
the forward read and 61.77% for the reverse read. Note that overclustering made a minimal
impact on cluster location.

gle cell libraries were clustered using 2 or 3 clusters. Therefore, GC-based pre-assembly read
partitioning proved incapable of improving the assembly of this highly heterogeneous RNAseq

dataset.

4.4.2.3 ERROR CORRECTION

Error correction was attempted on both lightly trimmed (Q5s) and harshly trimmed (Q30) taxo-
nomically selected SCT reads.

Bayeshammer, asimplemented in the Spades genome assembler, even on permissively trimmed
(Q > s) reads corrected only a maximum 0.0007% of reads in the 7 taxonomically selected SCT
libraries. As this affected on the order of 10s of reads it was not considered worth pursuing this
tool further.

SEECER, an RNAseq specific error correction tool was used to correct lightly trimmed (Qs)
and harshly trimmed (Q30) SCT reads. Approximately, 5.37% of Qs trimmed SCT reads were
corrected in SEECER and 0.51% of Q30 trimmed SCT reads were corrected.

Trinity assemblies of taxonomically selected single cell libraries (without bulk libraries) were
then compared with and without SEECER error correction (see table 4.4.6).

As can be observed, error correction of SCT reads made minimal effect to the overall like-
lihood of assemblies for this dataset even using only lightly trimmed reads. Error corrected Qg

trimmed reads actually performed worse than Q3o trimmed reads without error correction. Ad-
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ParKour Pre-assembly Read Partitioning
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Figure 4.4.8: Visualisation of GC-based paired read k-means clustering on a small random
subset of all single cell transcriptome reads. 2 initial centroids were specified without an
overclustering factokr and approximate final centroids (0.6674, 06177) and (0.4557, 0.4393)
are indicated by highlighted areas. 57.3M and 81.7M were assigned to each respective clus-
ter. Comparison to other clustering regimes can be found in table 4.4.5. This supports

the finding of the fig. 4.4.1 that there is a clear and identifiable cluster of high GC% reads
present in the sample and it is possible to identify and group these reads using unsupervised
learning.

Trim Threshold Number of Transcripts | Bases Assembled | Assembly Likelihood (— log)
Qs 112,182 52,511,552 | —3.168 - 10™°
Qs SEECER Corrected 111,853 51,847,128 | —3.147 - 10*°
Q3o 99,784 47,313,963 | —2.912 - 10'°
Q30 SEECER Corrected 96,494 46,312,469 | —2.995 - 10™°

Table 4.4.6: Naive Trinity assembly of Q5 and Q30 trimmed taxonomically selected single
cell libraries with and without SEECER error correction. While assembly likelihood increases
after error correction for Q5 trimmed reads it is still lower than Q30 uncorrected. For Q30
trimmed reads error correction marginally decreases assembly likelihood.

ditionally, Q30 trimmed reads generated marginally less likely assemblies with error correction
than without.

Therefore, error correction was considered ineffective for this dataset and thus was not used
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for further analysis. Instead, we elected to use uncorrected, taxonomically selected, Q30 trimmed

reads from this point on.

4.4.2.4 DIGITAL NORMALISATION

Digital normalisation and removal of likely erroneous k-mers (i.e. low abundance) via Khmer
reduced the total input reads from the Q30 trimmed taxonomically filtered SCT and bulk libraries
from 2.912 - 10° to 8.473 - 10° paired reads.

Of those, 6, 231 - 10° derive from the bulk and 2.253 - 10° from single cell libraries. Therefore,
as Q3o trimmed single cell libraries comprised 9.318 - 10° paired end reads and bulk libraries
consisted of 52.377 - 10° reads digital normalisation and abundance filtering resulted in a retention
of 2.418% of single cell PE reads and 11.891% of bulk PE reads.

Of these surviving single cell PE reads 9.762 * 10° were from the 3 selected light libraries
(Light1-9, Light1-10, and Light1-11) and 1.277 * 10° were derived from the dark libraries (Dark1-
2, Darka-3, Dark2-6, and Dark2-8). Therefore, abundancy filtering and digital normalisation did
not disproportionately remove light or dark single cell reads.

This Khmer based pre-processing had a very positive effect on assembly likelihoods. The
standard Trinity assembly improved in likelihood by an order of magnitude while assembling
more transcripts of near equal length (based on median contig length). The Khmer processed

assembly marginally increased median contig length at the expense of a lower Nso.

Preprocessing | Number of Bases | Contig | Median Assembly
Transcripts | Assembled Nso | Contig | Likelihood (— log)

Q30 and Bulk 127,508 | 83,264,944 851 411 —2.832 - 10"

Q30 and Bulk 147,902 | 92,395,841 789 423 —1.224 + 10°

with Khmer

processing

Table 4.4.7: Trinity assemblies (with —min-kmer-cov 2) of Q30 trimmed, taxonomically
selected single cell and bulk libraries with and without Khmer digital normalisation and k-
mer abundance filtering. Khmer pre-processing improved the assembly likelihood by an order
of magnitude, and significantly increased the total size of the assembly while only having a
marginally negative effect on contig N50s.

As Khmer pre-processing both significantly improved assembly run time as well as the overall
assembly quality (as assessed in the Trinity assembly comparison metrics above table 4.4.7) dig-

itally normalised and k-mer abundance filtered bulk and taxonomically selected Q3o trimmed
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SCT were determined to be the optimal pre-processing for this dataset.

4.4.3 ASSEMBLY
4.4.3.1 REFERENCED ASSEMBLY

Referenced assembly using the divergent Chlorella NC64A, Coccomyxa subellipsoidea C-169, Tetrahy-
mena thermophila, Paramecium caudatum genomes as references was largely ineffectual. Of all
bulk and SCT reads only 0.3 and 0.4% mapped to the algal references respectively. Similarly,
only 0.6 and 0.9% of reads mapped to the related ciliate genomes. This level of mapping is on
the order of random chance. Of the reads which mapped, a high proportion (73 — 82%) mapped
non-uniquely. This suggests mapping was occurring in low complexity regions and is an artefact
for the most part instead of biological significance.

The addition of gene junction annotation files for the reference genomes to improve spliced
mapping only improved the percentage of reads mapping by 0.05 — 0.3 percentage points. With
so few reads mapping, any attempt to class transcripts from this using cufflinks resulted in 10 — 23
total transcripts.

Therefore, referenced assembly using divergent related genomes proved impossible for this

dataset.

4.4.3.2 DE NOVO ASSEMBLY

The results of the initial assembler comparison using the combined assembly of Q30 trimmed
taxonomically selected SCT libraries (Light1-9, Light1-10, Light1-11, Dark1-2, Dark2-3, Darka-
6, Dark2-8) and bulk libraries are shown in table 4.4.8.

Critically, Oases, the IDA-MTP/UD/MT pipeline and SOAPdenovo-Trans at higher k-mer
values all failed to run to completion correctly with the dataset. In the case of Oases and SOAPdenovo-
Trans at higher k-mer values this was due to exhaustion of system memory and in the case of
IDBA-MTP/UD/MT workflow an unresolved coding error resulting in repeated segmentation
faults.

However, Trinity and Bridger both consistently generated assemblies of approximately equal
size (100-130,000 contigs of rational sizes: N5os of 700-850 and mean and median contig sizes of

600-660 and 410-470) across a variety of assembly parameters (not shown). Furthermore, they
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Assembler Parameters Number of | Bases Assembled Assembly
Contigs Likelihood — log

SOAPdenovo-Trans K23 374,325 7.64 - 107 3.778 - 10"

*K64 - - -

*K8o - - -
TransAbyss K20 3,272,137 1.722 - 10° -

K32 853,079 1.321 - 108 -

K64 376,280 9.755 - 107 -

Merged 3,055,851 2.71 - 10° —3.113 - 10*°

Oases* - - - -
IDBA-tran - 54,113 2.7 - 107 —4.589 - 10*°
IDBA-MTP/UD/MT** - - -
Trinity min_kmer cov2 127,508 8.326 - 107 —2.832 - 10"
Bridger Kas 114,582 9.707 - 107 —2.587 - 10"

Table 4.4.8: De novo combined assemblies of Q30 trimmed taxonomically selected single
cell libraries and bulk libraries (but not digitally normalised or k-mer abundance filtered) with
a range of assemblers and parameters. k-mer size used for assemblers with that option are
indicated in the Parameters column e.g. K23 indicates a 23-mers. Bridger and Trinity out-
performed other assemblers in terms of assembly likelihood and rational contig numbers and
sizes. * indicates assemblies programs that failed to run to completion due to insufficient
computational resources (despite using a server with 500GB of memory) ** indicates assem-
blies which failed due to coding errors in the application.

both consistently generated the assemblies with the greatest likelihoods (from RSEM-EVAL),
and ran most computationally efficiently.

Trinity and Bridger assemblies using digitally normalised and k-mer abundance filtered, tax-
onomically selected, Q30 trimmed, single cell and bulk libraries performed even better in terms

of assembly likelihood and read incorporation.

Assembler Parameters | Contigs | Bases Assembled | Assembly Likelihood (— log)
Bridger K19 | 102,686 8,209 * 107 —1.729 * 10°
K25 | 113,106 9.866 * 107 —1.183 * 10°

K31 | 112,391 8.941 * 107 —1.143 * 10°

Trinity Minimum k-mer Coverage of 1 | 176,097 1.113 * 10° —1.214 * 10°
Minimum k-mer Coverage of 2 | 147,902 9.239 * 107 —1.238 * 10°

Table 4.4.9: Assembly summaries of Q30 trimmed taxonomically selected SCT and bulk
reads after digital normalisation and k-mer abundance filtering. Parameters used in the as-
sembly indicates any special parameter settings used in the assembly i.e. K19 indicates a
k-mer size of 19 was used.

Smaller k-mer values (19-mer) performed worse in the case of the Bridger assembly with the
optimal assembly in terms of contig number and size was the k-mer size of 25. This was slightly
lower in terms of likelihood than the 31-mer Bridger assembly. The digitally normalised and fil-

tered Trinity assemblies generated much larger assemblies overall but still produced good likeli-

hoods.
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4.4.3.3 ASSEMBLY COMBINATION

Two assemblies were combined using the tr2aacds.pl script in EvidentialGene and a mini-
mum CDS size of 100. The first consisted of all successfully completed assemblies of non-normalised/filtered
reads i.e. SOAPdenovo-Trans, TransAbyss (multiple k-mer assembly merged using built-in tool),
IDBA-tran, Trinity and Bridger in table 4.4.8. The second, of the 3 Bridger digitally normalised

assemblies and two Trinity assemblies described in table 4.4.9.

Assembly || Input Contigs | Collapsed Contigs | Assembly Likelihood (— log)
Non-normalised Assemblies 3,726,379 46,063 | —4.347 % 10™°
Normalised Assemblies 652,182 53,628 | —1.823 % 10°
CD-HIT 90% meta-clustering 99,691 94,628 | —5.133 * 10"

Table 4.4.10: Summary of merged multi-assemblies. Collapsed contigs is the number of
contigs found in the merged set by the EvidentialGene pipeline. The level of assembly re-
duction and redundancy removal is high and, at first appearance, is impressively consistent
between meta-assemblies despite differences in preprocessing. However, CD-HIT metaclus-
tering at 90% identity shown at the bottom demonstrated that there was very little overlap
between these two minimised assemblies. Even the merged normalised assemblies generated
a meta-assembly of lower overall likelihood than the best individual constituent assemblies.

The combination of all non-normalised assemblies produced a surprisingly small set of con-
tigs, however, both assemblies also had lower likelihoods than any of their constituent assemblies.
It is of interest that despite generating similar numbers of contigs there was next to no overlap be-
tween the two combinations as assessed by clustering using CD-HIT at a similarity of 90%.

Therefore, the assembly selected for downstream binning and analysis was Bridger assembly
of bulk and library screened single cell normalised and k-mer abundancy filtered reads with a
k-mer size of 31 as it displayed the best likelihood while maintaining assembly statistics within

expected ranges.
4.4.4 BINNING

4.4.4.1  ORF CALLING

From the 112,391 contigs in the final selected assembly (3 1-mer Bridger Normalised and Taxo-
nomically Selected SCT and Bulk) - 1,005,370 ORFs longer than 30 amino acids were identified
using a Tetrahymena encoding. Using the 500 longest of these ORFs to train a Markov Model
and removing shorter ORFs that lay entirely within a longer ORF resulted in a final set of 70,605

ORFs.
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4.4.4.2 PERFORMANCE OF BLAST-BASED BINNING

10, 000 of these ORFs were randomly selected and used to search the NCBI nr database with
BLASTP with an expectation of 1e — 5. Based on the taxonomic provenance of the top-hit these
ORFs were assigned to a particular originating bin. The initial identification and binning of re-
covered transcripts into host and endosymbiont categories was tested using this phylogenetic
approach. The results of this analysis is plotted in fig. 4.4.9. This demonstrates that the initial bin

identifications were accurate for endosymbiont (~ 92%) and food (~ 94%) derived transcripts.

Phylogentic Confirmation of Contig Binning
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Figure 4.4.9: Preliminary analysis of change in binning after manual phylogenetic confirma-
tion. These results demonstrate that individual top BLAST hits is a sub-optimal means of
identifying transcript bins as they are partially inconsistent with full phylogenetic analyses.
Furthermore, this error is unevenly distributed across initial bins i.e. BLAST bins perform
worse for potential Host transcripts than they do for other bins. This analysis was based on
an earlier iteration of the assembly and ORF calling.
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4.4.4.3 PHYLOGENY-BASED BIN CLASSIFICATION

The 70,095 transdecoder called peptide sequences were then run through the automatic phy-
logeny generation pipeline (“Dendrogenous”) against the 40 representative genomes described
above. Of these, 38,193 had no BLAST hit against any genome database sequence and thus were
not used to generate phylogenies. A further 9,335 had less than 4 hits and thus were not used to
generate phylogenies but were taxonomically sorted based on the BLAST hit binning criteria to
give 8,574 “host” sequences, 258 “endosymbiont”, 395 “food” and 108 “unknown”. An additional
9 sequences had insufficient numbers of sites when masking to generate a phylogeny (< 30).
Finally, 10 phylogenies were malformed due to a latent bug in FastTree2. Therefore, 22,672 phy-
logenies were successfully generated and named from the input sequences. *

The training dataset and test datasets were visualised to ensure that the training dataset (gen-
erated during a previous iteration of these analyses) was representative of the test dataset. These
plots demonstrate a possible under representation of “Unknown” and/or “Food” samples (fig. 4.4.10)
but do reflect a training dataset that largely encompasses a good quantity of the same feature space
as the test dataset (fig. 4.4.11).

Numerous classification algorithms were fitted to this training dataset and hyperparameters
were efficiently optimised using random search and Bayesian optimisation on the cross-validation
folds. The average F-1 scores across classes were tallied and compared revealing k-neighbours the
most effective classification algorithm for this dataset (fig. 4.4.12).

As can be seen in the confusion matrix (and manual parsing of the classification reports from
each classifier (see appendix section A.2.2) k-neighbours (like the majority of classifiers) poorly
classified “Unknown” samples but largely performed well (0.89 — 0.9 for each class (table 4.4.11).

When the trained K-Neighbours model was used to classify the unlabelled 22,672 phyloge-
nies: 415 were “endosymbiont”, 2253 “unknown”, 19476 “host” and 531 “food”.

Therefore, of the 70,095 called ORFs in total there were: 28,050 were “host” derived, 673

*In speed testing “Dendrogenous” proved very efficient at rapidly generating phylogenies with its fully paral-
lelised mode capable of generating 100 phylogenies randomly selected transcripts against 41 genomes in an average
2:22.50 minutes. The same pipeline run serially took an average of 23:41.39 minutes and the stage-wise parallel
was very marginally faster at an average of 21:45.02 minutes.
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Radial Visualisation of Training Data
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Figure 4.4.10: Radial Visualisation of Manually Parsed Training Data. All input features
are normalised to unit magnitudes. Each point represents a single training sample (i.e. phy-
logeny) and its relative proximity to the cardinal points of the unit circle represents a the
number of closely related taxa considered part of that “class”. Unknown and Food classes
can be seen to be particularly problematic and poorly partitioned. represents the

“endosymbiont”, 40446 “unknown” and 926 “food”.

4.4.4.4 PERFORMANCE RELATIVE TO TAXASSIGN

TAXAssign performed relative poorly at taxonomic classification/binning of transcripts. Of 70,605
CDS sequences only 2,043 (2.893% ) were assigned a phylum level taxonomicidentity (table 4.4.12).
This can be contrasted with the 29649/70605 or 41.99% classified using the phylogeny and super-

vised classification system.

4.5 DiscussioN

4.5.1 LIBRARY SCREENING IS A KEY STAGE IN SC-RNASEQ

Despite evidence that nanoscale methods can greatly reduce levels of contamination (Blainey
and Quake, 2011), the taxonomic profiling conducted here indicates a high level of bacterial (and

viral) contamination in the sc-RNAseq. Therefore, much as library contamination is one of the
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Label Precision | Recall | F1-Score | Support
“Unknown” 0.96 0.84 0.90 156
“Food” 0.98 0.99 0.99 426
“Host” 0.90 0.99 0.98 787
“Endosymbiont” 0.97 0.99 0.89 359
average / total 0.95 0.96 0.95 1728

Table 4.4.11: Classification report of a trained and optimised k-neighbours classifier using
a leaf size of 30, minkowski distance metric and 50 neighbours. Note the poor performance
on “Unknown"” samples but generally good (> 90%) on other labels. This can likely be ex-
plained by the “miscellaneous” nature of this label and the diverse phylogenies that comprise
it.

Class Phylum Sequences Assigned
“Host” Intramacronucleata 97
“Endosymbiont” Streptophyta 101
Chlorophyta 58
Cyanobacteria 1
“Food” Proteobacteria 1270
Firmicutes 80
Actinobacteria 35
Bacteriodetes/Chlorobi 29
“Unknown” Chordata 365
Chlorovirus 94
Arthropoda 7

Table 4.4.12: Phylum level TAXAssign assignments for (2, 043/70, 60s5) CDS called from
the Bridger 31-mer assembly. Only 2.893% were assigned using this method relative to
39.72% for the phylogenetic supervised learning (Dendrogenous-Arboretum) method. There-
fore, this demonstrates how well this method works relative to conventional binning ap-
proaches like TAXAssign.
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Radial Visualisation of Training and Test Data
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Figure 4.4.11: Radial Visualisation of Test Data and Training Data. All input features are
normalised to unit magnitudes. Each point represents a single training sample (i.e. phy-
logeny) and its relative proximity to the cardinal points of the unit circle represents a the
number of closely related taxa considered part of that “class”. Test shows the position of all
unlabelled phylogenies. This plot shows where the training data is poorly sampled - specif-
ically phylogenies that only contain “host” and “food"” taxa or “host” and “endosymbiont”
taxa. Therefore, these phylogenies in the test data may prove problematic to easily classify.

key issues with single cell genomics (Blainey, 2013; Lusk, 2014,), itis also highly importantin SCT.
This is in concordance with the findings of (Kolisko et al., 2014), in which enigmatic, bacterial
contamination was a problem in single cell eukaryotic transcriptomes.

Single cell methods are particularly prone to contamination issues from reagents, laboratory
environment and enigmatic nucleic acids within the biological samples themselves. This is due
to the low-input concentration and high amplification necessary in these approaches (Blainey,
2013) leading to enrichment of non-target sequences, especially bacterial contaminants present
around or within the P. bursaria host. It is critical to identify and discard highly contaminated
libraries in de novo assemblies as contaminant reads severely complicate the assembly graph thus
increase the computational difficulty and reduce the accuracy of the dBG path resolution. This
was highlighted by observations in the preliminary stages of this project that the inclusion of cer-
tain (SCT) libraries would increase assembly run-time and lead to the generation of fragmented

transcripts relative to assemblies without those libraries.
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Trained Classifier Performance on Cross Validation Data

0.9

0.

o]

0.

~

0.

o

0.

v

0.

iN

0.

Mean F-1 Score Over Classes
w

0.

N

0

=

0.0

is
is

on

K-Neighbours
AdaBoost
Linear SVM
Random Forest
Decision Tree
Extra Tree

Logistic Regress
RBF SVM
Gaussian Naive Bayes

Linear Discriminant Analys:
Quadratic Discriminant Analys

Classifier

Figure 4.4.12: Average Fl-scores of each classification algorithm attempted. Note, that
k-neighbours performed the best and there was particularly poor performance in QDA and
Naive Bayes.
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Figure 4.4.13: Normalised confusion matrix for k-neighbours. These plots highlight the
problematic classes in the cross-validation dataset. The heatmap corresponds to the pro-
portion of samples classified with a given predicted label compared with their true labels.
“Host" samples are accurately classified however a small number are erroneously classified as
“Unknown”. Similarly, “Unknown” samples are relatively poorly classified in general.
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Taxonomic profiling also reveals other features of the dataset that wouldn’t necessarily be ob-
vious otherwise. Forinstance, our profiles demonstrated systematically lowlowlevels of Viridiplan-
tae related reads across both bulk and sc-RNAseq libraries and in both lit and dark conditions.
Despite care being taken to ensure thorough lysis of the chitinous Micractinium cells during RNA
extraction and a ratio of ~300 : 1 endosymbiont to host cell ratio this may be related to lytic
inefficiencies (Korthage et al,, 2015) or potentially just relatively lower endosymbiont transcrip-
tomic activity relative to host and associated bacteria species. Finally, it is possible that due to the
endosymbiont being largely provisioned by the host it may be relatively transcriptionally inactive
and thus relatively fewer transcripts can be recovered.

Intriguingly, taxonomic profiling of the bulk libraries showed a very high percentage of reads
mapping to no sequence in the nr protein database. This was significantly more than in the sc-
RNAseq libraries. While this finding is concerning it is likely to be an artefact of the older se-
quencing platform the bulk data was generated on. These paired reads were sequenced via the
GAII and were half the length of the HiSeq2 500 reads used for the SCTs. Shorter reads and a
relatively higher technical error rate on this platform may have played a role in this marked de-
cline in recognisable reads. Despite this, the relative proportion of bacterial reads to eukaryote
reads among the recognisable reads is much lower for bulk libraries than SCT. This does, however,
suggest that read length is highly important to accurate contamination screening/taxonomic pro-
filing.

Taxonomic profiling of reads/libraries proved surprisingly robust to trimming. The profiles
generated in “DueyDrop” were largely identical regardless of whether the input library had been
trimmed or not (even at high stringency thresholds). This indicates that screening can occur
before the computationally expensive trimming process without loss of accuracy. The results pre-
sented here also demonstrate that the profile generated from a relatively small random subsample
of a library is largely consistent with that of the profile generated from the library as a whole.

“DueyDrop” could potentially be improved in such a way that an entire library can be screened
quickly instead of just subsamples. Briefly, this would involve quantifying exact k-mer matches
between library reads and a pre-generated database of known taxa using efficient probabilistic
hashing data structures such as a bloom filter, or more likely count-min sketch and an efficient

k-mer counting library such as Jellyfish (Marcais and Kingsford, 2011). This would have a ma-
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jor speed advantage compared to the BLASTX-based method of “DueyDrop” and would thus
allow entire libraries to be checked in reasonable time. A similar approach to this has been imple-
mented as a service by https://www.onecodex. com/, although this focuses specifically on
screening for medically relevant taxa. However, it would require laborious workarounds to han-
dle k-mers shared between multiple taxa in the database, translation of reads and/or database
sequences into a matching sense and form (e.g. protein), and use of a locality-sensitive hash
function to handle scenarios where there is no exact k-mer match. This latter issue is particularly
problematic for libraries consisting of transcripts from poorly sampled sections of the tree of life
where exact matches would become commensurately rarer as sampling sparsity increases. While
still affected by this problem, the BLASTX/Diamond approach implemented in the “DueyDrop”
scripts are relatively more robust to these problems due the explicit probabilistic modelling of
sequence divergence built into the BLAST alignment algorithm (e.g. e-values). Other potential
improvements to “DueyDrop” would be to incorporate some degree of automatic clustering of
phylogenetic profiles using unsupervised learning and possibly manifold embedding, potentially
including a form of anomaly detection to discover contaminated libraries. Robustness of taxo-
nomic inference for each profile can also be improved by taking all hits instead of just the top one
and resolving conflicting phylogenetic signal using a lowest common ancestor algorithm over all

the hits.

4.5.2 COMBINING SINGLE CELL AND BULK TRANSCRIPTOME DATA CREATES NEW CHALLENGES

Contrary to previous studies in optimising conventional RNAseq assemblies where: permissive
trims (MacManes, 2014), error correction (Macmanes and Eisen, 2013; Macmanes, 2015) and
the combination of multiple assemblies (Nakasugi et al., 2014) have been demonstrated as effec-
tive tactics in recapitulating a comprehensive set of transcripts de novo, MDA-based SCT and bulk
datasets such as the one investigated above exhibit different properties. It is important to pick a
trimming threshold which minimises sequence error (mostly substitutions (Yang et al,, 2013b)),
as these result in assembly of spurious sequences, but doesn’t discard reads necessary to complete
transcripts (Macmanes and Eisen, 2013; MacManes, 2014). For the P. bursaria - M. reisseri bulk
and SCT dataset the optimal trimming threshold - based on both mapping statistics to prelimi-
nary assemblies and final assembly likelihoods proved to be a harsh threshold of Q3o.

Following a similar theme, despite numerous indications that error correction is important
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for improving the accuracy of genomic and transcriptomic assemblies using [llumina reads (e.g.
(Molnar and Ilie, 2014; Macmanes, 2015)) in the case of this dataset error correction appeared to
be have a minimal effect with few reads being corrected and downstream assemblies being largely
equivalent to those without error correction. In fact, permissively trimmed (Qs), error corrected
assemblies were shown to have lower likelihoods and smaller assembly sizes than more conser-
vatively trimmed assemblies (Q30). It should be noted that SEECER, while an RN Aseq specific
error correction tool is not optimised for single cell MDA-based datasets, and Bayeshammer is
not optimised for transcriptomic data. Therefore, the poor performance of error correction in
this dataset might be a consequence of the lack of error correction tools designed for MDA-based
sc-RNAseq datasets. It will likely prove beneficial, as datasets of this type become more prevalent,
to develop tools for this specific use case combining the most effective features of the MDA aware
BayesHammer and the RNAseq optimised SEECER. This said, there are several other available
Illumina RNASeq error correction tools which were not trialled, SEECER was chosen in accor-
dance to the recommendations based on dataset and hardware heuristics (> soM reads and the
availability of a high memory system) (Macmanes, 2015) but as we’ve demonstrated the limita-
tions of such heuristics on new types of data it might be worth investigating these alternative tools
turther.

Finally, merging multiple assemblies proved a sub-optimal strategy with all merged assem-
blies generating lower likelihood assemblies than the best individual assembly. While not merg-
ing assemblies might mean fewer transcripts are recovered (especially assemblies at a range of
k-mer sizes as short k-mers generally recover lower expression transcripts and vice versa for long
k-mers) the much higher likelihoods meant the best performing individual assemblies (Bridger
using 3 1-mers, Q30 trimmed taxonomically selected SCT and bulk libraries) were preferred.

These results suggest that MDA-based single cell transcriptomic datasets do not behave in
a qualitatively similar way to bulk RNAseq in terms of pre-processing and assembly parameters.
This means care must be taken incorporating advice and heuristics derived from studies based on
analysis bulk RNAseq datasets e.g. (Macmanes and Eisen, 2013; MacManes, 2014; Macmanes,
2015; Nakasugi et al,, 2014). As further studies using MDA SCTs are completed e.g. (Kolisko

etal, 2014) a greater understanding of the optimal analysis of this type of dataset will emerge.
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4.5.3 PRE-ASSEMBLY READ PARTITIONING IS NON-TRIVIAL

As we expect the PbMr metatranscriptome to contain predominantly a highly AT-rich organism,
Paramecium, (ranging from 24.1 to 28.2%GC in P. aurelia species complex and P. caudatum (Aury
et al,, 2006; McGrath et al., 2014)) and a GC-rich organism, Micractinium, (Chlorella variabilis
NC64A genome is approximately 67.1%GC, the highest found in a sequenced eukaryote genome
(in 2010) (Blanc et al,, 2010)), the utility of pre-assembly read partitioning was assessed. This
GC pattern was supported by the clear bimodal GC distribution that can be observed in fig. 4.4.1.
However, under careful observation it was apparent that the bimodal GC distribution was more
attributable to the presence of a GC-rich contaminant such as Rhizobiales (Peralta et al,, 2011).
Therefore, in practice pre-read partitioning was mainly attempted to try to remove these contam-
inant reads from screened libraries. Theoretically, accurate pre-assembly read partitioning could
transform a complex assembly graph into two relatively simpler assembly tasks. As well as simpli-
fying path resolution accuracy this method could speed up assembly considerably and thus allow
more iterations to optimise other assembly parameters.

This pre-assembly partitioning has been tried with mixed success in other meta-omic anal-
yses e.g. Droge and Mchardy (2012). However, a lack of fast efficient tools to accomplish this
led to the creation of “parKour”. The developed GC partitioning package proved very effective
at rapidly and relatively computationally efficient clustering of PE RNAseq data. ParKour gener-
ated clusters with centroids reasonably where they may be expected from inspection of per read
GC probability densities (see fig. 4.4.3) i.e. partitioning out the GC rich potentially contaminant
reads (likely from Rhizobia bacterial species). Unfortunately, in the case of this dataset, cluster-
ing proved ineffective at improving assembly accuracy and fully removing groups of contaminant
reads with large GC skews. The likely explanation for this is that even 150 bp paired end reads are
too short to consistently statistically demonstrate the GC-AT bias of the originating organism.
This means any partitioning is likely to remove a significant number of reads necessary to com-
plete transcripts due to local variation in AT bias. The high number of shorter contigs is indicative
of the kind of assembly fragmentation that would be expected in this situation.

However, the relative efficiency and theoretical benefits of this type of clustering indicates
there may be some potential to utilising a similar but less naive approach in future work. It may

be possible to combine “DueyDrop” and “ParKour” to allow read-level screening and partitioning
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of reads on the basis of taxonomic profile and compositional characteristics such as GC% and
tetramer frequencies. This could improve resolution of clusters and decrease the observed contig
fragmentation effect while performing accurate taxonomic screening.

Otherimprovements could include the consideration of alternative clustering algorithms such
as k-medoids (Kaufman and Rousseeuw, 1987) with more robust outlier stability or large scale
database clustering algorithms such as DBSCAN (Ester et al., 1996) or BIRCH (Zhang et al,,
1996) (allowing non-convex clusters). Silhouette coefficients and analysis® (Rousseeuw, 1987)
can be incorporated to aid determination of the expected number of clusters when it cannot be
determined a priori from inspecting the data as well as validation of generated clusters. Unfor-
tunately, other validation and analysis systems are somewhat limited due to the lack of ground
truth labelling available. Alternatively, a variational Bayes approach could be implemented to de-
termine the optimal number of clusters e.g. CONCOCT (Alneberg et al., 2014). Finally, mem-
ory efficiency can be improved by use of streaming clustering algorithms (e.g. those discussed in
O’Callaghan et al. (2002)) in which all data does not require to be loaded into a matrix at a given

time and can be clustered as they are parsed.

4.5.4 DIGITAL NORMALISATION GREATLY IMPROVES ASSEMBLIES

Digital normalisation, a method to remove redundant read data from libraries and thus reduce
the computational burden of assembly (Brown et al., 2012), was also investigated for this dataset
and found to be a highly effective strategy in improving assemblies of mixed bulk and MDA SCT
data.

Interestingly, some have argued that error correction is a special case of digital normalisation
(Krasileva et al,, 2013). This is supported by the fact that many error correction algorithms op-
erate on similar principal of attempting to remove low abundance k-mers from input datasets.
k-mers with a low abundance are more likely to be due to sequencing errors than representing
novel biological diversity. This said digital normalisation has the potential to spuriously discard
true variation that is merely undersampled in our libraries due to the high level of contamination.

This hypothesis is somewhat supported by the disproportionate retention of bulk reads rel-

ative to noisy single cell reads. However, within the context of the single cell reads the more

S = b—a
" max(a,b)
in the same class and b is the mean distance between a sample and all other points in the next nearest cluster

where s is Silhouette coefficient, a is the mean distance between a sample and all other points

(Pedregosa et al.,, 2011). Therefore, the Silhouette coefficient acts as a measure of cluster definition.
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highly contaminated dark reads were retained in roughly equal proportion to the light reads. This
suggests that MDA derived data may also just display a greater quantity of low-level sequencing
error.

It should be noted that the digitally normalised and k-mer abundance filtered assemblies also
incorporated more bases overall than the equivalent assembly using the full libraries therefore
resultant assemblies were not just high confidence (and likelihood) subsets of the initial input
data.

One factor that has not been adequately analysed in the context of this work is that of se-
quencing depth. Future studies will need to carefully consider sufficient sequencing depth given

the noise and prevalence of contamination in MDA based data.

4.5.5 ASSEMBLY AND ASSEMBLY ASSESSMENT

While we have demonstrated that some progress can be made identifying optimal pre-processing
parameters using measures such as mapping metrics it is very difficult to identify the parameters
(preprocessing or otherwise) which will leads to the “best” de novo assembly without actually gen-
erating the assembly. Assembly can be considered an example of Wolpert and Macready’s “No
Free Lunch Theorems” (Wolpert and Macready, 1995, 1997) as (in the case of de novo assembly)
it is fundamentally a hamiltonian/eulerian cycle search problem (equivalent in the de-Bruijn for-
mulation) and therefore any two assembly implementations (in different assemblers and/or with
different parameters) should ultimately be equivalent across all possible input datasets.’ For this
reason, it is necessary to try assembly using a variety of assembly hyperparameter values and in-
deed a range of both de novo and referenced assemblers.

Unfortunately, the task of identifying the “best” de novo transcriptome assembly is also a
non-trivial task (Neil and Emrich, 2013). Many widely used assembly assessment metrics have
been shown to be inconsistent measures in simulated sequencing data, especially those metrics
related to individual contigs (theoretically different transcript splices). Metrics such as average
length and Nso prove consistent across both simulated sequencing depth and read lengths i.e.
they improve towards (Neil and Emrich, 2013 ). Furthermore, the number of possible metrics is

greatly reduced if assessment is mainly conducted in a reference-free manner (Li et al., 2014). As

SThis should be taken with a pinch of salt, a proof of this theorem applied to the case of assembly is beyond
both the scope of this thesis and my abilities.
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the majority of assemblies were de novo and the suitability of the related but divergent genomes
proved lacking it was necessary to restrict to reference-free assembly assessments. Therefore,
a model-based reference-free assembly scoring algorithm (RSEM-EVAL (Li et al,, 2014)) was,
along with standard (if imperfect) metrics, used to evaluate different assemblies in this study. The
assumption of the accuracy of the RSEM-EVAL likelihood is a strong one, and deserves careful
re-consideration in further work.

In terms of referenced assembly using divergent relatives, it is safe to conclude that despite
other findings that even divergent (up to 15%) genomes can generate transcriptomes of higher-
quality than de novo (Vijay et al,, 2013 ), the potential references are too divergent in the case of
the PbMr to be of any utility.

Overall, a comparison of de novo assemblies using a range of assemblers and parameters on
“optimally” pre-processed read data demonstrated the clear superiority of both “Bridger” and
“Trinity”. Trinity comes with the advantages of being a generally better developed tool that in-
terlocks effectively via several plugins and utility scripts with other tools and analysis pipelines.

However, despite being relatively newer and consisting of a less mature and tested codebase,
Bridger proved to be a slightly more effective assembly tool overall. Unfortunately, coding prob-
lems and a lack of public active development means it is non-trivial to successfully use this tool.
In the process of implementing the above analyses it was necessary to fix several bugs present in
the assembler. These upgrades were merged into the code and are available on GitHub (https:
//github.com/fmaguire/Bridger_Assembler). Hopefully rehosting this code on a pub-
lic development and collaboration platform (as well as adding continuous integration) will spur
turther development of this promising tool.

Interestingly, despite strong evidence supporting the need to combine assemblies, due to the
size of the disjoint sets of transcripts recoverable from different algorithms and parameter choices
(Lowe et al,, 2014), assembly merging systematically led to worse overall assemblies with this
dataset (as assessed by RSEM-EVAL likelihood scores). The likelihood of the merged assemblies

were worse than the best individual constituent assemblies.

4.5.6 BINNING

Even once a good assembly has been generated it is still necessary to identify the likely originat-

ing species of a given transcript i.e. host, endosymbiont, food bacterial contaminant or other
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contaminant. While a successful partitioned pre-assembly strategy may simplify this process it
would still be sensible to confirm bins using downstream analyses that use full length assembled
transcripts. Rough, approximate bins were generated using a simple “top BLAST hit” approach
following ORF calling (using Tetrahymena and Universal encodings) against a set of representa-
tive predicted proteomes. In order to assess how accurate these bins were likely to be, 10,000
were randomly selected and rapid maximum-likelihood phylogenies were generated using the
transcript sequence as a seed to search the entire RefSeq protein nr database. This was accom-
plished using “Dendrogenous’, a rewritten and modified version of a pipeline originally known
as “Darren’s Orchard” which first appeared in (Richards et al., 2009). Phylogenies were manually
assessed to check whether the resultant topology was congruent with the BLAST based binning
i.e. are supposedly “endosymbiont” transcripts branching principally with Archaeplastida taxa.
However, due to the slow largely manual nature of this phylogeny assessment process it would be
infeasible to repeat this for all transcripts generated from a single assembly, let alone investigating
several such assemblies.

Therefore, this became a fundamental classification problem with the 10,000 manually veri-
fied phylogenies forming a handy training dataset for supervised learning. To determine the best
performing classification algorithm and hyperparameters for this dataset an automated search
was conducted using bayesian optimisation. This was then converted to a binning script named
“Arboretum”.

High throughput phylogeny generation, parsing and supervised classification is a more sensi-
tive and powerful way in which to bin transcripts into their likely originating organisms provided
areasonable level of a priori knowledge of the system at hand. This demonstrably operates better
than established although simpler approaches such as TAXAssign or top BLAST hit. While clas-
sification accuracy (and F-1) is sub-optimal for “Food” and “Unknown” bins it (table 4.4.11) a
decentlevel of precision and recall for the target bins of “Host” and “Endosymbiont” was achieved
using “Arboretum”.

However, this classification is still a work in progress and could potentially be improved by the
addition of anomaly detection in place of the catch-all (and subsequently poorly classified) “Un-
known” classes. Furthermore, there are several potential possible improvements in the classifica-

tion itself that could be made. Specifically, unsupervised clustering pre-training could potentially
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forgo the need for laborious manual generation of the training dataset and minimise the difficul-
ties in handling these aberrant phylogenies. Additionally, an AutoML bagging estimator such
as one of those implemented in the AutoML project (Eggensperger et al,, 2013 ), a variational
autoencoder pre-processing following by a deep neural network classifier or using a phylogeny
specific kernel function (Vert, 2002) in a Gaussian process or SVM system all offer potential al-
gorithmic improvements. Finally, incorporation of more sequence related features such as k-mer
coverage, n-mer frequencies and composition into each samples may help greatly improve the

fidelity of classification.

4.6 CONCLUSION

In conclusion, for this dataset the optimal pre-processing was determined to be careful taxonomic
screening of input libraries, followed by trimming at a high (Q30) threshold and subsequent dig-
ital normalisation and low-abundance k-mer filtering. The optimal assemblies were generated
using larger (25-31 k-mer) sizes and utilised the Bridger (and to lesser extent Trinity) assembly
algorithms. While pre-assembly read partitioning proved ineffective in this implementation, in
future a less naive method that incorporates both read-level taxonomic data and compositional
information could potentially improve assemblies of complex eukaryotic metatranscriptomes, es-
pecially those that combined bulk and single cel RNAseq data. In general, MDA-based single cell
datasets have been shown to be noisy and thus difficult to analyse. Potentially it may be advisable
to limit their use to systems with robust references or to use much greater sequencing depths.

Finally, I have demonstrated that BLAST based transcript binning alone is ineffective at ac-
curately binning transcripts. Fast, automated phylogeny generation and the subsequent use of
supervised learning (particularly large ensemble models such as Random Forests and those Au-
toML algorithms) can potentially improve the quality of such binning. Further work in the im-
plementation of unsupervised clustering of generated phylogenies could conceivably forgo the
laborious process of manually generating a training dataset.

Points arising in this analysis:

« It is possible to generate a functional working transcriptome combining bulk and MDA

based RNAseq (see table 4.6.1)
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Transcript Bin | Number of Transcripts | Called ORFs
Endosymbiont 8,975 4,275
Host 18,793 17,920
Food 18,516 -
Unknown 66,107 -

Table 4.6.1: Summary of transcriptome assembly and binned sequences

« sc-RNAseq libraries generated from dark samples are problematic.

« Binning methodologies may prevent easy finding of novel genes due to a lack of homology.
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“All models are wrong, but some are useful”

- George E.P. Box & Draper: Empirical model-building

and response surfaces, 1987

Metabolic integration

5.1 INTRODUCTION

The linking of metabolism between host and endosymbiont is a fundamental stage in endosym-
biotic integration (Bhattacharya et al,, 2007; Karkar et al,, 2015). Complementation of the re-
spective metabolic deficiencies/limitations in host and endosymbiont allow exploitation of novel
niches and provide the key selective benefits of endosymbiosis (Hoffmeister and Martin, 2003 ).
In order to identify putative metabolic integration it is necessary to identify the primary “points
of contact” between the metabolic networks of host and endosymbiont. These “points of contact”
comprise two major classes of proteins, transporters and secreted proteins. In the P. bursaria sys-
tems we are mainly interested in host and endosymbiont transporters which localise to the peri-
algal vacuole (PV) membrane and the outer-membrane of the endosymbiont. Similarly, we are
interested in the host and endosymbiont proteins which are secreted into the PV lumen.

We can also investigate metabolic integration through the annotation and analysis of known
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metabolic pathways in host and endosymbiont from the binned transcriptome sequences. This
allows identification of pathways being expressed while in the endosymbiotic relationship and
potentially identify sites of metabolic integration between host and endosymbiont e.g. (Russell
etal, 2013).

Finally, a characterisation of metabolites present in the system can be used to further interro-
gate host and endosymbiont metabolic function. A metabolomics based-approach has the benefit
of directly characterising the metabolites themselves and thus determining biological activity at
the top functionallevel. Therefore, relative to analyses relying on abstracted measures such as tran-
scription levels or gene copy number, novel information about cellular dynamics can be revealed.
This is particularly important in cases of of cryptic regulatory systems that break-down direct map-
ping from genes to transcripts to proteins to metabolites. By using both targeted and untargeted
metabolomics approaches it is possible to survey the combined pool of host and endosymbiont
metabolites both qualitatively and quantitatively. These inferences can then be correlated with
other data such as the presence of transcripts involved in the synthesis or degradation of these
metabolites.

By utilising these three separate streams of metabolic analysis: comparative transcript anno-
tation and mapping, directed identification and analysis of transporters and secreted proteins and
metabolomics, we maximise the strength of any inferences and reduce the chance of false nega-
tives. First, I will summarise what is currently known about the metabolic integration of P. bur-
saria and its green algal endosymbionts before discussing each of the analytical approaches that

will be taken in more detail.

§.1.1 METABOLISM OF HOST AND ENDOSYMBIONT

The most obvious point of metabolic integration in any endosymbiosis featuring a photosynthetic
partner is that of the flow of photosynthates from endosymbiont to host. This is believed to pri-
marily be in the form of carbohydrates such as maltose (Muscatine, 1967). In return, the host fa-
cilitates increased rates of photosynthesis in the endosymbiont (Sommaruga and Sonntag, 2009),
via supply of CO, (Parker, 1926), one or several forms of nitrogen (Johnson, 2011), and mono-
and divalent cations such as K™, Mg®*, and Ca*". All of which have key roles in photosynthesis

(Kato and Imamura, 2009b).
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5.1.1.1 PHOTOSYNTHATE

The transfer of maltose, glucose, fructose and malate from endosymbiont to host has been ob-
served previously using radiolabelling e.g. (Brown and Nielsen, 1974). Furthermore, green algae
strains competent to form endosymbioses can be induced (via modifying pH) to release signifi-
cantly more photosynthate (in the form of ~ 95% maltose) than strictly free-living strains (on
the order of 5.4 — 86.7% vs. 0.4 — 7.6% of total photosynthate) (Muscatine et al.,, 1967). Inter-
estingly, the export of photosynthate from the PV to the host cytoplasm may be dependent on
a transporter derived from the C. variabilis 1N in the P. bursaria Yad1g endosymbiosis (Kodama
and Fujishima, 2008).

In terms of the uptake of saccharides, C. variabilis F36-ZK endosymbiont strains seem in-
capable of directly utilising sucrose, maltose, glucose or fructose in free-living culture (Kamako
et al,, 2005; Kato and Imamura, 2009b). Glucose, does promote growth however, via an appar-
ent sensing pathway that leads to the up-regulation of amino acid importers (Kato and Imamura,
2009b). On the other hand, the free-living C. vulgaris strains have an inducible system for active
hexose uptake (Tanner et al,, 1974). In order of highest to lowest uptake rate, the free-living C.

vulgaris took up sucrose, glucose and maltose but not fructose (Kato and Imamura, 2009b).

5.1.1.2 NITROGEN

Nitrogen is the most transferred material between host and endosymbiont after carbon (Kato
and Imamura, 2009b). There has been considerable research and interest in exactly what form
this nitrogen exchange takes (Kato et al., 2006; Kamako et al., 2005; McAuley, 1986).

C.variabilis (both NC64A and the Japanese F36-ZK) have been found to be able to use amino
acids effectively as a nitrogen source but only minimally utilise ammonium (NH,") and are inca-
pable of effective nitrate (N O;) or nitrite (NO;") use (Kamako et al., 2005; Kato and Imamura,
2009b). Similar patterns have been observed in M. reisseri, although all strains tested could utilise
nitrate and 3/4 could use nitrite to greater or lesser degrees (Kessler and Huss, 1990). On the
other hand, free-living species such as Parachlorella kessleri can effectively utilise all of the nitro-
gen sources mentioned (Kato and Imamura, 2009b) (although amino acid utilisation has to be
induced with glucose treatment (Cho et al,, 1981)).

In terms of amino acids as a nitrogen source there isn’t a high degree of correlation between
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the ability to uptake an amino acid and its usage (Kato and Imamura, 2009b). For example, while
C. variabilis F36-ZK can uptake all 20 amino acids, only 6 (L-arginine, L-asparagine, L-glutamine,
L-serine, L-alanine) were found to promote growth (Kato et al., 2006). This was despite some
of these 6 being taken up at lower rates than some non-utilised amino acids such as L-proline,
L-cysteine or L-leucine (Kato et al., 2006).

Similarly, C. variabilis NC64A was found to have stimulated growth in the presence of L-
arginine and L-glutamine, whereas another C. variabilis strain, 3N813A, used every amino acid
apart from L-lysine and L-glutamic acid (McAuley, 1986; Kato and Imamura, 2009b).

The free-living C. vulgaris NIES-227 was found to not utilise any amino acid apart from low
levels of uptake of L-arginine (Kato et al., 2006). Therefore, even within the C. variabilis strains
there is a range of traits in terms of amino acid uptake and utilisation.

Kinetic analyses and competitive assays indicate three amino acid transport systems in C. vari-
abilis F36-ZK, a general amino acid tranporter for all amino acids except L-alanine, a basic trans-
porter for L-arginine and L-lysine and a specialised L-alanine transporter (Kato and Imamura,
2009a,b). All of these are constitutively functioning, active, amino-acid symporters (Kato and
Imamura, 2009a,b).

As P bursaria cannot import nitrate (Albers et al., 1982) the heterogeneous loss of nitrate and
nitrite utilisation in several endosymbiotic strains is perhaps not surprising (Kato and Imamura,
2009b). Without host nitrate uptake there is no pressure to maintain enzymes necessary for this
pathway as an endosymbiont. This reduced selection pressure for nitrate and nitrite utilisation
may explain the presence of low-activity mutant Nitrate Reductase (NR) and Nitrite Reductase

(NiR) in the two C. variabilis strains (Kato and Imamura, 2009b).

5.1.1.3 CATIONS

The final major group of host-endosymbiont transferred metabolites are those of mono- and di-
valent cations. Specifically Ca**, Mg*" and Kt (Kato and Imamura, 2009b). All of these have
key roles in photosynthesis. Interestingly, Ca*>* has also been found to inhibit amino acid uptake
(Kato and Imamura, 2008). As glucose has been found to increase amino acid uptake, some re-
searchers have hypothesised that the relative concentration of photosynthates and Ca*" in the
PV lumen defines a photosynthate-amino acid barter system between endosymbiont and host

(Kato and Imamura, 2009b).
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5.1.2 IDENTIFYING DIRECT POINTS OF CONTACT
§.1.2.1 TRANSPORTER PROTEINS

The most important group of proteins in the control and evolution of metabolic integration is that
of host and endosymbiont transporter proteins. This is due to their role in facilitating diffusion
and active transport across the lipid membranes that exist between host and endosymbiont.

Without transporters many metabolically important large uncharged polar molecules (e.g.
carbohydrates, amino acids) and charged molecules (e.g. the various biologically relevant cations
and anions such as HT) are incapable of significant rates of diffusion across membranes even in
the presence of high concentration gradients. Therefore, the presence of transporters is vital to
facilitating any interaction involving these groups of metabolites.

Several metabolites are, however, capable of unfacilitated diffusion across lipid membranes
at significant rates. These include important respiratory gases such as O, and CO,, hydrophobic
compounds like benzene and small uncharged polar molecules (e.g. H,O and ethanol) (Cooper,
2013; Alberts, 2015). Despite this, transporter proteins have evolved to facilitate even more rapid
diffusion of some of these metabolites e.g. aquaporins (Agre et al., 1993).

Finally, certain transporters can provide the ability to actively transport metabolites against
concentration gradients. This involves the expenditure of energy (typically in the form of ATP)
to directly pump compounds or generate an opposing gradient which can be exploited (primary
vs secondary active transport).

There are 5 functional groups of transporters (Saier et al., 2014):

« Channel/Pore types which catalyse diffusion of metabolites along concentration gradients

e.g. porins and the Mitochondria and Plastid Porin (MPP) family.

« Electrochemical Potential-driven transporters which use a carrier-mediated process to catal-
yse uniportation (single metabolite) or cotransportation (two species in the same direc-
tion, symportation, or two species in opposite direction, antiportation). These make use of
chemiosmotic gradients but generally do not directly make use of cellular energy molecules
such as ATP. However, many make use of a gradient/potential generated by the active
transport of solutes by another complex, in this case they can referred to as secondary ac-

tive transporters. Electrochemical Potential-driven transporters are a very large family and

169



include the ubiquitous major facilitator superfamily (MFS) and Cation Diffusion Facilita-

tor (CDF) families.

« Primary active transporters which use a direct source of chemical, electrical or light energy
such as ATP, voltage or photon to drive transport against concentration gradients. Trans-
porters of this type form many of the components fundamental to life as they allow an
organism to decouple itself directly from environmental and intracellular gradients. They
include rhodopsins, ATP-binding Cassette (ABC) Superfamily, and the general Secretory

Pathway (Sec) family.

« Group translocators, which modify a substrate during transportation e.g. polysaccharide
synthesis during secretion in the Polysaccharide Synthase/Exporter family and the Fatty

Acid Group Translocation (FAT) family which can acylate fatty acids during transport.

« Transmembrane Electron Carriers which transport single electrons from a donor to an ac-
ceptor across a membrane. The major groups of these include the cytochrome and Photo-

system I complexes.

This analysis will focus on transporters of the first 4 classes. In the case of P. bursaria and
its endosymbiont we are particularly interested in the transporters of the host perialgal vacuole
membrane and those of the outer membrane of the green algal endosymbiont.

Therefore, the first step to the successful analysis of the metabolic integration of host and
endosymbiont is the accurate identification of transporter proteins present in their respective
binned transcriptome sequences. By both identifying these proteins and qualitatively investigat-
ing their day:night expression, targets can be generated for further analysis. Specifically, valida-
tion of function and analysis of localisation to the PV and/or algal outer membrane.

Transporter proteins can be identified primarily via annotation of transmembrane (TM) do-
main motifs and homology searches to previously identified transporters (Saier et al., 2006, 2009,
2014). All transporters feature at least 1 TM helix, usually considerably more (von Heijne, 2006).
However, as not necessarily every sub-unit of a transporter will contain a TM domain and as our
assemblies consist of numerous partial transcripts it is necessary to not rely exclusively on TM

prediction to discover transporter proteins.
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5.1.2.2 SECRETED PROTEINS

The next major class of proteins involved in endosymbiosis are those which are secreted in the
PV lumen. Host and endosymbiont derived proteins targeted to the lumen of this vacuole are
responsible for generating the local environment for endosymbiosis. This is fundamental to the
exchange of metabolites between host and endosymbiont as this is the cellular context in which
that exchange must occur. Furthermore, in the establishment of endosymbiosis secreted eftectors
from the endosymbiont are likely responsible for the modification of a phagosomal vesicle into
the perialgal vacuole.

One particularly interesting example to identify would be the hypothesised endosymbiont
derived transporter exported to the PV membrane that is responsible for export of photosynthate
to the host cytoplasm (Kodama and Fujishima, 2008).

The identification of secreted proteins relies on the analysis of signal peptides and/or a range
of standard classification algorithms based on sequence and compositional features. Signal pep-
tides are short 15-30 amino acid N-terminal sequences that determine targeting of proteins to
cellular compartments (Schatz and Dobberstein, 1996; Rusch and Kendall, 1995).

SignalP (Nielsen et al., 1997) has proven the most effective method of predicting the pres-
ence of signal peptides (Lee et al., 2009; Petersen et al., 2011). This method uses a standard feed-
forward artificial neural network with 8-41 hidden units (depending on whether the organism is
eukaryotic, gram positive or gram negative) trained with back-propagation.

Subcellular localisation of a given protein can also be inferred using tools such as the WoLF
PSORT (Horton et al,, 2007). This tool implements a standard k-neighbours classifier trained
on localisation labelled proteins from SwissProt and uses PSORTII (Nakai and Kanehisa, 1992;
Nakai and Horton, 1999; Horton and Nakai, 1997) and iPSORT (Bannai et al., 2002) derived
sequence features and automatic inference of weightings (Horton et al., 2006).

In addition to these tools, there are many other systems that have been designed to predict
protein localisation. In order to maximise the probability of successful identification of secreted
proteins I have created a consensus ensemble classifier that incorporates predictions from several

of these tools, principally SignalP, TMHMM, TargetP, ChloroP, and WoLFPSort.
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5.1.3 METABOLIC MAPPING

Metabolic pathways form the functional backbone of all biological processes. The Kyoto Ency-
clopedia of Genes and Genomes (KEGG) (Ogata et al., 1999; Okuda et al., 2008; Kanehisa et al.,
2014) and MetaCyc (Caspi et al., 2007) databases form an important resource for contextualis-
ing genomic and transcriptomic scale results into these networks. The utility of this approach is
emphasised by the presence of numerous tools and analytical pipelines to explore these databases
e.g. (Okuda et al., 2008; Nakao et al., 1999; Karp et al., 2002, 2010; Antonov et al., 2008; Klukas
and Schreiber, 2007).

By comparing the relatively complete predicted peptides sets from the sequenced endosym-
biotic algae C. variabilis NC64A and Coccomyxa subellipsoidea C-169 genome projects to the pre-
dicted endosymbiont binned peptides from the transcriptomes of M. reisseri and C. variabilis 1N it
is possible to infer which endosymbiotic metabolic pathways are active in the latter two endosym-
bionts. Furthermore, identification of pathways unique to individual algae can identify potential

distinct adaptations to endosymbiosis in that algae.

5.2  AiMs

The principal aim of this chapter is to identify likely points of metabolic integration between
host and endosymbiont to generate targets for subsequent targeted mass spectrometry, RNAi

and qPCR based validation experiments. This will be achieved by:

« Identifying transporter proteins present in the endosymbiont binned transcripts from the
CCAP1660/12 RNAseq analysis and analysing them for qualitative expression across day

and night.

« Identifying secreted proteins present in the endosymbiont binned transcripts from the
CCAP1660/12 RNAseq analysis and analysing them for qualitative expression over day

and night.

« Comparative analysis of metabolic pathways between host and endosymbiont relative to

sequenced green algal genomes.

« A pilot untargeted global metabolomic profile of the system and comparison of day to

night.
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« Targeted quantitative analysis of amino acid concentrations between day and night.

5.3 METHODS

5.3.1 TRANSPORTER ANALYSIS
5.3.1.1 TRANSPORTER IDENTIFICATION PIPELINE

Transporters were identified in the 4 sets of sequences (C. variabilis, M. reisseri, C. vulgaris and C.

subellipsoidea) using the following set of pipe-lined filters:

1. Transmembrane (TM) domains were predicted for each sequence usingan HMM approach
implemented as part of TMHMM2 (Sonnhammer et al,, 1998; Krogh et al., 2001) and se-

quences predicted to contain at least 1 TM domain were extracted.

2. These sequences were then used to search a PFAM database of profile HMM:s (Eddy, 1995)
via HMMER3’s hmmscan utility (Eddy, 1995; Johnson et al., 2010; Eddy and R, 20171;
Mistry et al,, 2013 ) and sequences with a hit to a PFAM domain at an independent e-value

of 1e75 were retained.

3. These hits were then finally filtered for PFAM domains which mapped to transporter fami-
lies classified by the Transporter Classification Database (TCDB) (Saier et al., 2006, 2009,

2014) mapping files.

Additionally, to ensure thorough discovery of all M. reisseri transporters, M. reisseri binned se-
quences were BLASTP-ed against the nr protein database with an e-value of 1e”* and a maximum
of 20 hits. InterproScan (Zdobnov and Apweiler, 2001) was then used to further annotate these
proteins incorporating results from BlasProDom (Servant et al., 2002), FPrintScan (Attwood
et al, 1994), HMMER (Mistry et al., 2013) scans against the PIR (Barker et al., 1998), PFAM
(Bateman, 2002), SMART (Schultz et al., 1998), PANTHER (Thomas, 2003) and TIGRFAM
databases (Haft, 2003 ), ProfileScan (Gribskov et al., 1988), HAMAP (Lima et al., 2009), Pat-
terScan, SuperFamily (Gough and Chothia, 2002), SignalP (Petersen et al., 2011), TMHMM
(Sonnhammer et al., 1998), Gene3D (Buchan et al., 2002 ), Phobius (Kill et al., 2007) and Coils.
Results were then mapped to GO terms (Ashburner et al., 2000; Harris et al., 2004) and anno-

tated via BLAST2GO (Conesa et al., 2005).
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Finally, all proteins annotated to have a GO term associated with “transport” and “transport
activity” (specifically GO: 0006810 and its child terms) were extracted.

This set was then filtered for the presence of TM domains and to remove organelle related
transporters such as cytochrome system and photosystems as these are unlikely to localise any-

where other than the mitochondria and chloroplast.

5.3.2 SECRETOME PREDICTION

A conservative set of secreted proteins were predicted using the following consensus ensemble

classifier:

1. Signal peptides were detected using SignalP4.1 and mature sequences created for each se-

quence with a signal peptide

2. Sequences detected to have a TM domain (by TMHMM) within either the mature se-

quence or full length for proteins without signal peptides were discarded.

3. Signal peptides were re-added to mature sequences and the remaining sequences were then

filtered using for those predicted as secreted by TargetP1.1

4. These sequences were then filtered down to those which had extracellular localisation in

WOoLFPSORT o.2

5. Finally, for the endosymbiont, secreted protein found to have a Chloroplast targeting signal

(via ChloroP1.1) were removed.

In addition to this, a larger permissive set was generated without the TMHMM filtering step
and retaining all proteins predicted to be extracellular or have a signal peptide targeting for secre-

tion.

5.3.3 QUALITATIVE EXPRESSION ANALYSIS

Kallisto (Bray et al., 2015) was used to pseudoalign and estimate abundances for all taxonomi-
cally screened single cell libraries (4 dark and 3 light) to the called “endosymbiont” binned CDS

sequences from the P. bursaria CCAP 1660/ 12 transcriptome (see Chapter 4).
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Kallisto doesn’t align reads to references in the same manner as conventional short read align-
ment algorithms such as Bowtie2 (Langmead and Salzberg, 2012). Instead of specifically map-
ping a read to a set of co-ordinates it instead determines which transcripts are compatible with
the alignment of a given read. This is achieved via decomposition of transcripts in de-Bruijn
graphs and fast k-mer hashing to compare reads to transcript graph nodes in constant time. These
k-compatibility classes are then used with bootstrapped expectation-maximisation to estimate
transcript quantification and determine uncertainty (Bray et al., 2015).

Results were visualised and analysed using “sleuth” and the seaborn plotting library (Waskom

etal., 2015).

5.3.4 METABOLIC MAPPING ANALYSIS

First, predicted proteomes were obtained or generated for Coccomyxa subellipsoidea C-169, Chlorella
variabilis NC64A, Chlorella variabilis 1N, and M. reisseri.

For M. reisseri the endosymbiont binned sequences from the transcriptomic sequencing project
discussed in the previous chapter were used. Coccomyxa subellipsoidea C-169 genome project
(Blanc et al., 2012) version 2.0 JGI annotated proteins (created 12-01-2014) were downloaded
from JGI's Phyotozome v10.3.1 (Goodstein et al., 2012). Similarly, the “best” annotated proteins
from version 1 of the Chlorella variabilis NC64A genome project (Blanc et al,, 2010) were down-
loaded from JGI's genome portal (Grigoriev et al., 2011; Nordberg et al., 2014)

However, to obtain C. variabilis 1N endosymbiont peptides a reassembly and binning of raw
sequencing data from (Kodama et al., 2014) was conducted (discussed below).

Once all sequences were acquired they were annotated using KEGG orthology. This was
achieved using the KEGG Automatic Annotation Server (KAAS) (Moriya et al., 2007) single-
directional best hit with both BLAST and GHOSTZ (Suzuki et al., 2014, 2015) method against
the following 40 gene sets: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Ara-
bidopsis thaliana, Gylcine max, Vitis vinifera, Oryza sativa, Ostreococcous lucimarinus, Ostreococcus
tauri, Micromonas sp. RCC299, Cyanidioschyzon merolae, Galdieria sulphuraria, Saccharomyces
cerevisiae, Candida albicans, Neurospora crassa, Aspergillus nidulans, Coccidioides immitis, Schizosac-
charomyces pombe, Ustilago maydis, Encephalitozoon cuniculi, Monosiga brevicollis, Dictyostelium dis-
coideum, Acanthamoeba castellanii, Plasmodium falciparum 3D7, Cryptosporidium hominis, Tetrahy-

mena thermophila, Paramecium tetraurelia, Phaeodactylum tricornutum, Emiliania huxleyi, and Guil-
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lardia theta.
KEGG annotations were then plotted onto KEGG metabolic networks and compared to iden-
tify key aspects of differences between the algal species as well as between the host and endosym-

biont metabolic networks.

5.3.4.1 CHLORELLA VARIABILIS 1N ASSEMBLY

232.3M 100 bp paired-end reads from (Kodama et al,, 2014)’s bulk RNAseq transcriptome of
Paramecium bursaria Yad1g1N (syngen 3, mating type 1) bearing Chlorella variabilis 1N endosym-
bionts were downloaded from the DNA Data Bank of Japan (DDBYJ) (Tateno etal., 2002; Kaminuma
etal, 2011) in Sequence Read Archive (SRA) format (Leinonenetal,, 2011; Kodamaetal,, 2012)
(accession DRA00o9o7 Kodama et al. (2014)).

These reads were then converted to fastq using “fastq-dump” using the SRA Toolkit (National
Center for Biotechnology Information, 2011). Reads were then trimmed for sequencing adapters
using ILLUMINACLIP and SLIDINGWIND OW with a window size of 4 and a minimum aver-
age quality of 5 in Trimmomatic (Bolger et al,, 2014).

Following this, reads were error-corrected using SEECER with a k-mer size of 25 and default
settings otherwise (entropy of 0.6 and a cluster log-likelihood of -1) (Le et al, 2013). Error-
corrected reads were digitally normalised using a k-mer size of 25 and a coverage of 20 (Brown
et al, 2012) and low abundance k-mers in high coverage reads were filtered (Zhang et al,, 2014,
2015) using the Khmer software package (Déring et al., 2008; Crusoe et al,, 2015).

Assemblies were completed in a modified/fixed version of Bridger 2014-12-01 (Chang etal,
2015) (available at https://github.com/fmaguire/Bridger Assembler) and Trinity
v2.0.6 (Grabherr et al., 2011; Haas et al., 2013 ) both with k-mer sizes of 2.

An alternative Trinity assembly was also completed using SLIDINGWIND OW Q3o trimmed
reads without normalisation or error correction.

Assemblies were compared using RSEM-EVAL (Li et al,, 2014) and the best overall assembly
selected on the basis of likelihood. ORFs were called from the best assembly using universal and
Tetrahymena encodings via TransDecoder (Haas et al., 2013 ) retaining the best scoring sequences
and those with HMMR hits to PFAM and BLASTP hits to the SwissProt database.

Phylogenies were generated for each sequence using the same approach and pipeline described

in Chapter 4. These phylogenies were subsequently classified using the same trained k-Neighbours
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supervised learning algorithm. Any sequence that didn’t have enough BLAST hits in the genomes
used to generate a phylogeny (5) were parsed based on what hits were retrieved. Those with no
hits were classified as “unknown” and those with hits were classified based on the origin of those
hits e.g. hits to green algae and plant genomes were considered “endosymbiont” and so on.
Finally, the ORF bins for host and endosymbiont from both encodings were manually com-
bined and reconciled to generate transcript bins. The transcripts binned into “host” and “en-

dosymbiont” were subsequently recalled as ORFs using the appropriate transdecoder encodings.

5.3.5 METABOLOMICS

Three mass spectrometry analyses were conducted to investigate the presence/absence and rela-
tive abundances of polar and non-polar metabolites. Specifically, GC-QTOF to principally iden-
tify metabolites such as carbohydrates, LC-QTOF in positive and negative ionisations to profile
general metabolites.

Finally, a targeted mass spectrometry analysis was conducted using LC-QQQ to quantita-
tively assess the concentration of free amino acids in the host-endosymbiont system during the

day and night.

5.3.5.1 UNTARGETED LC-QTOF PROFILING

Sample preparation for mass spectrometry followed standard protocols. Briefly, 5 biological repli-
cates were sampled from P. bursaria CCAP 1660/ 12 cultures at the midpoint of both the day and
night cycles. Samples were then dried, flash-frozen in liquid nitrogen, and homogenised using a
cell disruptor.

For each sample, 10 mgwas dissolved in 400 pl of a solution of 80 % MeOH containing 7.2 mg ml ™
of an umbelliferone internal standard. This solution was kept on ice and vortexed for 30 s every
10 min for 30 min. Samples were sonicated in ice cold water for 15 minutes and then centrifuged
at 13 krpm for 10 min. Retaining the supernatant in a separate tube, the pellet was resuspended in
400 pl 80 % MeOH and vortexing, sonication and centrifugation steps repeated. The two super-
natants were combined and filtered through a 0.2 pm syringe filter (Chromacol). Samples were
sub-divided into two a 5 pl of each was loaded into an Agilent 1200 Series HPLC with a 3.5 pm,
2.1 X 150 mm Eclipse Plus C18 Agilent column. One sample was then analysed using a positive

electron spray ionisation and the other a negative ionisation on an Agilent 6520 accurate mass
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quadrupole time of flight (QTOF) mass spectrometer. Data was captured using the standard
Agilent data acquisition software and converted from “d” format to the open mzXML format
(Pedrioli et al., 2004). The same process was repeated for 7 blank samples under both ionisation
conditions as well as an apigenin QC standard.

Samples were analysed primarily using the XCMS R package (Smith et al., 2006; Tautenhahn
et al, 2012b). Peak features were detected in each samples using the centWave algorithm with
a 30ppm tolerated m/z deviation, minimum peak width of 10 and maximum peak width of 60
(Tautenhahn et al., 2008). Peaks were aligned with a 0.025 m/z width overlap, and a maximum
bandwidth s retention time deviation. Using the aligned peaks, the retention time deviation be-
tween samples were calculated. The samples were then realigned correcting for retention time
deviation and integrated using fillPeaks.

In order to determine differential presence of globally detected metabolites unpaired Welch’s
t-tests were conducted comparing the 5 day samples to the 5 night samples. Welch’s tests were
used as they don’t assume equal sample sizes or variances between the two groups (Welch, 1947).

P-values from this were corrected for multiple comparisons using false discovery rates (FDR).
FDR is a less conservative correction than, the classic family-wise error rate correction, Bonfer-
roni adjustment’ but allow maintenance of a greater proportion of statistical power with a slightly
elevated risk of Type-I errors.

Features were then annotated using the METLIN metabolite database (Smith et al., 2005a;
Sana et al,, 2008; Tautenhahn et al,, 2012a). Extracted ion base peak chromatograms were man-
ually inspected for each significantly expressed feature and any that weren’t clear distinct peaks
were discarded. Any sample without an annotation against METLIN was similarly discarded. Fi-
nally, annotations were manually parsed and samples with implausible annotations (e.g. chemother-

apeutic drugs) discarded.

5.3.5.2  UNTARGETED GC-QTOF PROFILING

Standard sample preparation was conducted with s light and 5 dark biological replicates.
Agilent “d” proprietary format outputs were converted to mzXML as above. The majority of

the analysis pipeline was conducted using the metaMS R library (Wehrens et al., 2014). Briefly,

!P-value threshold a is adjusted relative to the number of comparisons (n). Specifically, significance is deter-
mined as a P-value < %
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Preprocessing PE Reads

Raw Reads 2.323 - 10°
Q30 Trimmed 1.75 - 10°
Qs Trimmed 2.127 - 10°

Qs Error Corrected 2.021 - 10°

Qs Digital Normalisation 1.09 - 107
Qs k-mer abundance filtering | 1.055 - 107

Table 5.4.1: Summary of read pre-processing stages for the Kodama library. This table
further emphasises the massive amount of redundancy that digital normalisation removes
from the assembly. The minimal effect of k-mer abundance filtering is likely due to a relative
redundancy in this pre-processing from the error correction step.

this involved standard peak picking using the default XCMS algorithm (Smith et al., 2006) fol-
lowed by clustering into pseudospectra using CAMERA (Kuhl et al,, 2012). Pseudospectra were
then annotated against the NIST and METLIN databases using a combination of spectral and re-
tention time features. Finally intensity and relative abundances were calculated and tested using

FDR corrected Welch’s t-tests.

5.3.5.3 TARGETED QUANTITATIVE AMINO ACID ANALYSIS

s Day and 5 Night samples were prepared for liquid chromatography using the same approach
as the untargeted LC-QTOF analysis. In addition to this, the Day1 and Night1 samples were
analysed at both 2x and 0.5« titrations. 3 blank samples were run as well as standards consisting of
a complete amino acid mix from Sigma at 0.5yM and 4 samples consisting of Asparagine-Glycine-
Tryptamine and Leucine-Glutamine-Lysine respectively.

After chromatography samples were ionised using electronspray ionisation and analysed us-
ing multiple reaction monitoring optimised for amino acids with an Agilent Technology 6410B
enhanced sensitivity triple quadrupole mass spectrometer (QQQ).

Results were analysed using the Agilent Quantitative Analysis software package with peaks

normalised in respect to the umbelliferone standard.
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Assembly Contigs | Likelihood (—log)
Trinity Qs Normalised | 101,957 1.216 - 10°
Bridger Qs Normalised | 62,504 1.285 - 10°
Trinity Q30 53,938 5.619 - 10°

Table 5.4.2: Summary of resultant assemblies of sequencing data derived from (Kodama
and Fujishima, 2014). As the Trinity Q5 Normalised assembly had the best likelihood while
generating the greatest number of contigs it was used for downstream analyses.

Bin Number of Transcripts
Food 3,873
Endosymbiont 8,627
Host 53,295
Unknown 36,162

Table 5.4.3: Summary of transcript binning for the Q5 Trinity assembly of Yad1gIN. A
much greater proportion of transcripts were assigned to host and endosymbiont for this as-
sembly than in the single cell based assemblies previously conducted.

5.4 REsuLTS

5.4.1 P.BURSARIA-C. VARIABILIS YAD1G1N ASSEMBLY

A complete de novo assembly was conducted of sequencing data from (Kodama and Fujishima,
2014) based on experiences assembling P. bursaria-M. reisseri CCAP 1660/12 (see Chapter 4).
Briefly, all samples were combined, trimmed to Qs, error corrected, digitally normalised and
abundance filtered. Another dataset was prepared just using adapter trimming and a quality thresh-
old of Q30. Assemblies conducted with these datasets using both Trinity and Bridger de novo
assemblers were evaluated using RSEM-EVAL and the optimal assembly chosen on score.

Therefore, the optimal assembly chosen for further analysis was the Trinity Qs normalised
assembly. From the 101,957 transcripts 193,906 ORFs were called using Tetrahymena encoding
and 20,875 universal. These were subsequently binned using the same approach as used in previ-
ous chapter.

Finally, “Host” and “Endosymbiont” binned transcripts were re-ORF called using the appro-
priate encodings to result in a host ORF bin of 61,239 sequences and an endosymbiont bin of
5,565 peptides.

These are relatively reasonable dataset sizes especially when considered against the source of
the raw sequencing data. Specifically, the analysis of (Kodama et al,, 2014), which involved the

elimination of endosymbionts from the culture. Therefore, only half of the libraries theoretically
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C. variabilis 1IN | M. reisseri CCAP 1660/12 | C.variabilis NC64A | C. subellipsoidea C-169
Peptides 5,568 4,275 9,791 9,629
1+ TM domains 695 419 1,722 1,709
1+ TM and TCDB 251 185 690 697

Table 5.4.4: Summary of the sizes of the complete transporter complements identified in
the various algal sequence sets. The two genome based predicted proteomes generated much
larger predicted sets of proteins (C. variabilis NC64A and C. subellipsoidea C-169).

Annotation of M. reisseri Binned Peptides

Sequences
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Total Sequences

With InterProScan

With Blast Hits

With Mapping

With Annotation

Figure 5.4.1: Summary of Endosymbiont Bin Annotation. This shows that the majority but
not all transcripts were successfully annotated.

contained C. variabilis sequences so the recovery of the majority of the predicted proteome is

surprising.

5.4.2 TRANSPORTER IDENTIFICATION

Based on the results of the transporter identification pipeline the genome based predictions from
C. variabilis NC64A and Coccomyxa led to a much larger set of candidate transporter proteins
than those from the two binned transcriptomes. However, smaller subsets represent all candidate
transporters that are actively being transcribed during endosymbiosis rather than just all those
present in the genome. Therefore, this is not necessarily problematic and could be symptomatic
of the endosymbiont exhibiting a streamlined metabolism inside the host. The M. reisseri predic-
tions were then supplemented using standard annotation pipelines (fig. 5.4.1).

From the GO based annotations there were 427 proteins associated with the GO term for

transmembrane transport (GO : 0006810). These overlapped with approximately half of the TM/TCDB

identification (93/185 proteins). 133 of the 427 GO term annotated transporters had at least 1
TM domain (and this 133 contained all 93 shared TM/TCDB and GO based identifications as

would be expected).
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Figure 5.4.2: Comparison of similarity of taxonomically screened single cell libraries. This
shows how relatively divergent each library is and demonstrates the high level of noise. The
dark and light groups are only very faintly visible. This further supports the use of read-
mapping inferences as qualitative rather than quantitative data for MDA-based SCT.

On manual inspection, a large number of GO based annotations were partial/subunits or
could only very tenuously be referred to as transporters. Due to this only those with a TM do-
main were retained and added to the list of candidate transporters. This resulted in a list of 22
putative transporters for M. reisseri CCAP 1660/ 12. These were then manually filtered to remove
obviously organelle related groups, specifically cytochromes/electron transport chain proteins
and photosystem related proteins leading to a final set of 161 putative transporter proteins.

In terms of candidate sugar transporters, this set includes 7 MFES transporters, a hexose sugar
transporter, a sugar-phosphate translocator, a sweet1 sugar transporter a nucelotide-sugar trans-
porter, a mannose-6-phosphate isomerase, and a fucose permease. There were also 2 polyol trans-
porters e.g. a glycerol-3-phosphate transporter and an inositol transporter. Candidate amino acid

transporters included 8 amino acid permeases.

5.4.3 SUBSET OF TRANSPORTERS EXPRESSED IN DAY AND NIGHT

Using the nucleotide CDS sequence of the called peptides identified as transporters reads from
each of the 7 taxonomically screened single cell libraries were pseudo-mapped to them using
Kallisto. Due to the compositional/coverage biases of MDA-based single cell transcriptomics
Kallisto statistical inference was likely to be spurious and relate to the well-documented coverage
biases of MDA (see fig. 5.4.2). Therefore, a simple presence/absence filter was implemented for
the single cell libraries where an estimated Transcripts per million (TPM) was above o for at least

1 biological replicate in each condition.
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Name

Description/Annotation

Top BLASTP Hit Accession

Top Hit Species

comp1093_seq1|m.1645
comp34.z46_seqo|m.33953
comp1178 1iseqo|m. 10145
comp3589 1iseqo|m.35 196
comp13652_seqo|m.12349
comp12191_seq1|m.10601
comp2381 1_seqo|m.24460
comp34406_seq1 |m.341 11
comp2584éiseqo|m.2658o
comp14064_seqo|m.12814
comp1§360_seqo|m.14352
comp16603_seq1 |m. 16010
comp 17473_seqo|m. 17096
comp1 803375eqo|m. 17793
comp2 13897seq0|m.21756
comp22779_seqo|m.23394
compzzggo_seqo|m.z3626
comp231 35_seqo|m.23792
comp26434iseqo|m.z7099
comp26454_seqo|m.27109
comp2716_seqo|m.2808
comp2716_seq1 |m.2.8 11
comp2716_seq2 |m.28 15
comp3037675eqo|m.3o648
comp851 97iseqo|m.68827.
comp43295_seqo|m.41027
comp29655_seqo|m.30102
comp271 37_seqo|m.27822
comps1 985_seqo|m.48090
comp1 356775eqo|m. 12197
comp3 27sziseqo|m.32669
comp72377_seqo|m.62224
comp52706_seqo|m.4.8773
compz73o4_seqo|m.z799 1
comps83 1475eqo|m.53o37
comp4921 1iseqo|m.45885
comp1§817_seqo|m.15012
comp391 78_seqo|m.37743
comp4956o_seqo|m.4.621 o
comp2916 1iseqo|m.2963o
comp35923_seqo|m.35211
comp36025_seqo|m.35:.98
comp39264_seqo|m.378 15
comp40136_seqo | m.38461
comp4084.275eqo|m.39088
comp43747_seqo|m.41450
comp44082_seqo|m.41788
comp44147_seqo|m.41832
comp45947_seqo|m.43343
comp46264iseqo|m.4.354z
comp4658975eqo|m.438 15
comps0679_seqo|m.47029
comps1446_seqo | m.47612
comp60279_seqo|m.54339
comp643 56_seqo|m.57ogz
comp647oéiseqo|m.5725 1
comp8593giseqo|m.69 120
comp66975_seqo|m.s8878
comps9 167_seqo|m.53685
comp69839_seqo|m.605 36
comp7654975eqo|m.64487
comp78298_seqo|m.65658
comp80077_seqo|m.666 13
comp9596_seqo|m.8023

Uric acid-xanthine permease
Uric acid-xanthine permease
Signal recognition particle protein 3
Sensory protein
Phagocytic receptor 1b
Inorganic phosphate transporter
Inorganic pyrophosphatase
Potassium transporter 2-like
Protein trigalactosyldiacylglycerol chloroplastic
Sugar transport protein 10-like
Drug metabolite transporter superfamily
Adenine guanine permease
gpr1 fun34 family protein
Hypothetical upfoo6s protein
Proton phosphate symporter
Na' solute transporter
Inositol transporter 4-like
MES transporter
ATPase p
Plasma membrane iron permease
Amino acid permease 6
Amino acid permease 2
Amino acid permease 2
Amino acid permease 2
Amino acid permease
Lysine transporter?
ABC transporter permease
ABC transporter ATP-binding protein
ABC permease ATP-binding family protein
ABC transporter
Membrane AAA-metalloprotease
ABC transporter permease
ABC transporter permease
Peptide ABC transporter permease
Protein transport protein sec61 subunit alpha isoform partial
ATP-binding protein
Transmembrane 9 superfamily member 3
Transmembrane 9 superfamily member 3-like
Transmembrane 9 superfamily member 4
Sulphate transport system
Membrane protein
MES transporter
TctA transporteri
NaDH dehydrogenase subunit 3
Adenine guanine permease azg1
Vesicle-associated membrane protein 726
Serine threonine protein kinase
Calcium-transporting ATPase endoplasmic reticulum-type
Cyclic nucleotide-binding protein
V-type proton ATPase 16 kda proteolipid subunit
V-type proton ATPase subunit A3-like
ER lumen protein-retaining receptor
AMP-dependent synthetase
Presenilin-domain-containing partial
Zinc transporter
ATPase P
Glycosyl transferase/Callose synthase
Fucose permease
Mannose-6-phosphate isomerase
Iron/manganese transporter
Iron/manganese transporter
Upfoo14 membrane protein starz
Diguanylate cyclase
Tricarboxylate transport membrane protein

ref| XP_005848091.1]
ref|XP_005848091.1]
ref|XP_o005846072.1|
ref|WP_027033724.1|
ref| XP_009389646.1]
ref| XP_005852067.1|
ref| WP_028786954.1|
ref|XP_011399197.1]
ref|XP_005845784.1|
ref| XP_005842790.1|
ref| XP_005851889.1]
ref|XP_005850398.1]
ref|XP_005848680.1
ref|WP_o19198042.1|
ref| XP_011398136.1]
ref| XP_011396846.1]
ref| XP_005846641.1]
gb|ESWs8454.1]
ref|WP_026773962.1|
ref|XP_005844294.1]
ref|XP_o11400870.1|
ref| XP_o11400870.1|
ref|XP_o11400870.1]
gb|KPF41572.1]
ref|XP_005846503.1]
ref|XP_005847284.1]
ref|[WP_044404984.1|
gb|ACFo1145.1]
gb|EFD03879.1|
ref|XP_005849318.1]
ref|XP7001697103.1|
ref|[WP_046827962.1|
ref|WP_046827962.1|
ref| WP_009735611.1
ref|XP_005843596.1|
ref|[WP_os1503901.1|
ref| XP_005845268.1]
ref|XP_o11395771.1]
ref|XP_005847406.1]
gb|AGZ19377.1]|
ref| XP_005844583.1]
ref[WP_o12790048.1|
ref|[WP_027575203.1|
ref|YP_009049981.1]
ref|XP_005850398.1]
ref|XP_005843431.1]
ref|[WP_053333544.1|
ref| XP_005847889.1]
ref|XP_005848599.1]
ref|XP_o05848107.1]
ref|XP_005849093.1|
ref| XP_005845363.1]
ref[WP_o019199842.1|
gb|KDD71768.1|
ref|XP_007512557.1|
ref|WP_o034225211.1|
releP7011395511.1|
ref|[WP_022830286.1|
ref|WP_o052557275.1|
ref|WP_022832831.1|
gb|AEW00627.1|
ref|[WP_035836204.1|
ref|[WP_009735916.1|
ref|[WP_014280238.1|

Chlorella variabilis
Chlorella variabilis
Chlorella variabilis
Mesorhizobium loti
Musa acuminata
Chlorella variabilis
Terrimonas ferruginea
Auxenochlorella protothecoides
Chlorella variabilis
Chlorella variabilis
Chlorella variabilis
Chlorella variabilis
Chlorella variabilis
Afipia birgiae
Auxenochlorella protothecoides
Auxenochlorella protothecoides
Chlorella variabilis
Pseudomonas fluorescens BBCc6R8
Sediminibacterium sp. OR43
Chlorella variabilis
Auxenochlorella protothecoides
Auxenochlorella protothecoides
Auxenochlorella protothecoides
Rhizobium sp. AAP43
Chlorella variabilis
Chlorella variabilis
Rhodopseudomonas palustris
Rhodopseudomonas palustris TIE-1
Propionibacterium acnes
Chlorella variabilis
Chlamydomonas reinhardtii
Afipia massiliensis
Afipia massiliensis
Bradyrhizobiaceae bacterium SG-6C
Chlorella variabilis
Sphingomonas jaspsi
Chlorella variabilis
Auxenochlorella protothecoides
Chlorella variabilis
Chlorella sp. ArMoo29B
Chlorella variabilis
Chitinophaga pinensis
Bradyrhizobium sp. WSM1743
Chlorella sorokiniana
Chlorella variabilis
Chlorella variabilis
Gemmatimonas phototrophica
Chlorella variabilis
Chlorella variabilis
Chlorella variabilis
Chlorella variabilis
Chlorella variabilis
Afipia birgiae
Helicosporidium sp. ATCC 50920
Bathycoccus prasinos
Actinotalea ferrariae
Auxenochlorella protothecoides
Cytophagales bacterium
Gemmata sp. IIL3o
Cytophagales bacterium B6
Niastella koreensis GR20-10
Cryobacterium roopkundense
Bradyrhizobiaceae bacterium SG-6C
Paenibacillus terrae

Table 5.4.5: A complete list of the 64 putative transporters present in

SCT libraries (at least one of each) with their annotation/description
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Binary Filter Map of Transporter Expression

Not Expressed in SCT (14)

Expressed in Light only
(48)

Expressed in Dark only
(34)

Transporters

Expressed in
both Light and Dark
(64)

Dark SCT Expression Light SCT Expression

Figure 5.4.3: A binary filter heatmap that displays the 4 groups of transporter proteins
identified in the P. bursaria-M. reisseri transcriptome. Specifically, it shows the way that
transporters fall into different expression “groups” and their relative sizes. In detail, 34 trans-
porters are expressed only in dark single cell libraries, 48 expressed only in light libraries, the
64 expressed in both and the 14 only recovered in the bulk libraries.

5.4.4 SECRETED PROTEINS

Using the secretome prediction consensus ensemble classifier in conservative and permissive set-
tings resulted in a putative secretome of 24 and 249 proteins respectively. Unfortunately, the
permissive group contained a significant number of transporters so the analysis focused on the
conservative consensus secreted proteins.

While many of these have no clearly defined function two of the most interesting secreted pro-

teins here relate to carbohydrate metabolism. Specifically, “comp65133_seqo|m.57547” which

Secreted Protein Name Annotation/Description Top BLASTP Hit Accession Top Hit Species
comp10940_seqo|m.9287 Unknown - -
comp11029_seqo|m.9365 Unknown

comp23584_seq1 |m.241 8s Unknown - -
comp13389_seqo|m.11956 Unknown membrane component ref| WP_004718904.1] Acinetobacter guillouiae
comp13389_seq1|m.11962 Unknown membrane component ref|[WP_004718904.1| Acinetobacter guillouiae
comp15590_seqo|m.14704 Hypothetical protein ref|XP_005845446.1] Chlorella variabilis
comp19575_seqo|m.19598 SOUL heme-binding protein ref|XP_005646909.1] Coccomyxa subellipsoidea
comp19875_seqo|m.19979 DDB1- and CUL4-associated factor 12-like ref|XP_005848716.1| Chlorella variabilis
comp24544_seqo|m.25243 | Peptide ABC transporter substrate-binding protein gb|KJC48675.1| Bradyrhizobium sp. LTSP849
comp2§746_seqo|m.26477 Chloroplast precursor - -
comp26585_seqo|m.27218 Hypothetical protein ref|XP_005846166.1] Chlorella variabilis
comp30431_seqo|m.30722 Predicted protein - -
comp31345_seqo |m‘3 1491 Quter membrane protein ref]W'P70086 12716.1 | Joostella marina
comp41497_seqo|m.39631 a-l-fucosidase ref|[WP_o41886110.1] Pedobacter sp. NL1g
comp45018_seqo|m.42444 Dipeptidyle peptidase ref|XP_o003740022.1| Metaseiulus occidentalis
comp45978_seqo|m.43356 Glycoside hydrolase ref|[WP_049876385.1| Sorangium cellulosus
comp48174_seqo |m.45 141 Recombinase gb |AAM949 59.1 | Volvox carteri f nagariensis
comp48206_seqo|m.45162 Glutathione peroxidase ref| WP_022832669.1] Cytophagales bacterium B6
comps0890_seqo|m.47213 type i polyketide synthase ref|XP_005650993.1] Coccomyxa subellipsoidea
comps6156_seqo|m.s1365 SNase-like nuclease gb|AIP99476.1| Ornithobacterium rhinotracheale ORT-UMN 88
comps7702_seqo|m.s2483 Unknown - -
comps9306_seqo|m.s3753 soma ferritin-like gb|AAN63032.1| Branchiostoma lanceolatum
comp60645_seqo |m454526 Hypothetical protein ref|XP_00585 1273.1 | Chlorella variabilis
comp6932_seq1|m.s603 Hypothetical protein gb|EKE16659.1| Uncultured bacterium
comp65133_seqo|m.s7547 Raffinose synthase ref|]XP_005845739.1] Chlorella variabilis
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appears to be homologous (expectation of 1.38e-10) to Raffinose synthase, and “comp41497_seqo |m.42444”
which is a fucosidase.

The secretion of a glutathione peroxidase is also intriguing. Peroxidases protect from oxida-
tive damage therefore, this suggests there may be oxidative stress within the PV lumen. Finally,
the membrane components could either be a misprediction and proteins integral to the algal outer
membrane. Alternatively, they could be some of the hypothetical algal derived factors that inte-

grate into the PV membrane (Kodama and Fujishima, 2009).

5.4.5 METABOLIC MAPS

Comparison of the M. reisseri metabolic map against the combined maps of the other 3 green algal
datasets here (C. variabilis 1N, C. variabilis NC64A, and C. subellipsoidea) reveals some unique
genes transcribed in M. reisseri that are expressed while an endosymbiont.

Specifically, several subunits of carotenoid biosynthesis were expressed in M. reisseri during
endosymbiosis. Carotenoid liposomes have previously been implicated in the prevention of pho-
totoxicity in Paramecium caudatum (Rich etal,, 1992). This meansitis possible that these carotenoids
could play arole in the observed photoprotective phenotype. Additionally, there are numerous as-
pects of amino acid metabolism and degradation only present in M. reisseri compared to the other
algal endosymbionts. For example, lysine degradation pathway components, glutaminases (nec-
essary for gluatmine, D-glutamate degradation and the metabolism of alanine and aspartate), and
urea cycle components. Finally, there appears to be missing components of fatty acid catabolism
in M. reisseri relative to the other endosymbionts. The degradation products of fatty acids have
been found to inhibit Chlorella growth (Ikawa et al., 1997) meaning the partial loss of the fatty
acid degradation pathways may be highly deleterious. This might explain the complete loss de-
spite the relatively small phylogenetic distance between M. reisseri and the other endosymbiotic

green algae.

5.4.6 METABOLOMICS
5.4.6.1 GLOBAL PROFILING

The global metabolic profiling had mixed results. Very few metabolites were identified in the GC-

QTOF analysis and of those very few were the target carbohydrates. Inspection of cloud plots for
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Figure 5.4.4: KEGG maps contrasting the putative metabolism of the endosymbiont binned
sequences with the metabolism of each of the other 3 green algal species (C. variabilis
NC64A and 1N, and Coccomyxa subellipsoidea C-169).
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Cloud Plot of Significantly Differentially Present GCQTOF Features

m/z
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Retention Time (minutes)

Opay @ Night

Figure 5.4.5: Cloud plot showing for the GC-QTOF analysis. The radius of a given point
reflected its fold change. Data is filtered to those 50 points with significantly different ex-
pression (FDR corrected P-value of 0.01 shown by depth of colour). The poor separation of
components across retention time suggests that GC could be re-calibrated to optimise the
separation of these metabolites

this dataset (ﬁg. 5.4.5) indicates poor calibration of GC/MS capture parameters.

However, 3 carbohydrates were identified in this dataset (fig. 5.4.6), including a putative
decreased concentration of acetyl-glucose during the day. On the other hand, a putative galac-
tose/fructose and a fucose/galactose/rhammulose peak demonstrated significant increases in
abundance during the day with fold changes between 3 and 4.

LC-QTOF seemed to be more calibrated - identifying a much greater number of metabolites
(fig. 5.4.8, fig. 5.4.9, fig. 5.4.10) with better separation (fig. 5.4.7).

Several amino acids and oligopeptides were identified as having significantly different day/night
concentrations in the LC-QTOF analyses. However, the most significant peaks were that of a
hugely decreased abundance of Raffinose (fold change of 9.7) during the day. On the other hand,
the polyols Arabitol /Xylitol were present at higher quantities (1.52-2.24 fold) and arabinose (2.7

fold) during lit conditions.
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GC-QTOF Significantly Different Metabolites
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Figure 5.4.6: Plot showing the fold change of the 23 putatively identifiable significantly

differently present metabolites from GC-QTOF. 5 peaks were discarded after inspection of

the EIC. 8 were discarded as there was no sensible annotation, 14 had no annotations.
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A Cloud Plot of Significantly Differentially Distributed LCQTOF Positive Features
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Figure 5.4.7: LC-QTOF cloud plots with A showing the positive polarity analysis and B
showing the negative polarity. The radius of a given point represents its fold change, with
larger radius indicating a larger fold change. Data is filtered only to include points with sig-
nificantly different expression and the depth of colour indicates the P-value. Contrary to
the GC-QTOF analysis LC-QTOF shows a relatively good separation of metabolites. This
plot also emphasises that far more metabolites were detected and discovered differentially
expressed under positive ionisation.
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LC-QTOF (Positive) Significantly Down Regulated Metabolites
Raffinose
Several putative 4-mer Oligopeptides (down)
1,2 di-(9Z,12Z,15Z-octadecatrienoyl)-3-0O-Beta-D-galactosyl-sn-glycerol
Momordicoside OR Goyaglycoside
methyl 9-butylperoxy-10,12-octadecadienoate
2,3-Butanediol g\ucosme OR Histidinyl-Proline
1-tetradecanoyl-2-hexadecanoyl sn-glycero-3-phosphosulfocholine
beta-D-Mannosylphosphodecaprenol
Hordatme A glucoside OR Gabunine
Fasciculic acid
Tyromycic acid
Several putative 3-mer Olwgopeptldes (down)
19-Norcholestanol
3-0-Protocatechuoylceanothic acid
2-Methyl-4-chlorophenoxybutyric acid OR Anthracene cis-1,2-dihydrodiol
Flavonol 3-O-D- -g ycoslde

Nonadecadien-3-one"

Octadecyl fumarate OR cholanoic acid

ecanoyl-R-carnitine

4,8 dimethylnonanoy! carnitine OR 9-hydroperoxy-10E,12- octadecadlenmc acid
Glycolaldehyde dimer OR 3S,4-dihydroxy-butyric acid OR L-Erythrulose
Phloionolic acid OR 18-hydroxy-9S,10R-dihydroxy-stearic acid
Octadecatetraenoic acid
2-(3-carboxy-3-(trimethylammonio)propyl)-L-histidine
Tetradecylamine

Flavanone

Cinereain OR 6-Hydroxypentadecanedioic acid
7,2'-Dihydroxy-6,8-dimethyl-4',5'-methylenedioxyflavan

4-| hydruxy palmltlc acid OR 3- hydroxy hexadecanoic acid

Isopimaric acid

2-hydroxyhexadecanoic acid OR 4-hydroxy palmitic acid
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Figure 5.4.8: LC-QTOF positive ionisation detected metabolites that were significantly
more abundant at night relative to the day. Of the 254 positive significantly different present
metabolites, 19 were removed after manual inspection of peaks, 95 were removed due to
having no METLIN hits.

LC-QTOF (Positive) Significantly Up Regulated Metabolites
Dihydrocordoin
Several putative 4-mer Oligopeptides (up)
Glutamyl-Serine OR 2-Hydroxy-4-0xo0-5,12-heneicosadien-1-yl acetate
Several putative 3-mer Oligopeptides (up)
2,3-Butanediol glucoside OR Glutaminyl-Glutamate
5,9,17-hexacosatrienoic acid
Isoamyl isothiocyanate
Glycerol tripropanoate OR Several Putative 4-mer Oligopeptides
D-Alanyl-D-serine
D-Arabitol OR Xylitol
Diamino-pimelic acid OR Several putative 2-mer Oligopeptides
3-Hydroxyflavone
Ureidoglycolic acid
6-bromo-tetracosa-5E,9Z-dienoic acid
Several putative 4-mer Oligopeptide (up)
Prenyl-L-cysteine
S-Methyl-1-thio-D-glycerate
DL-Cycloserine
6-Dimethylaminopurine
Piperidine
arabinosyl-(1->6)-glucoside OR Several putative 4-mer Oligopeptides
Aspartyl-Glutamate ]
Linoleoyl glycine OR N-cis-hexadec-9Z-enoyl-L-Homoserine lactone |
Methyl 4-chloro-1H-indole-3-acetate ]
4-Chloroacetophenone ]
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Figure 5.4.9: LC-QTOF positive ionisation detected metabolites that were significantly
more abundant in the day relative to night. 254 positive significantly different present
metabolites, 19 were removed after manual inspection of peaks, 95 were removed due to
having no METLIN hits.
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LC-QTOF (Negative) Significantly Down Regulated Metabolites

Ambrettolic acid OR Palmitic acid

Cyclohexylsulfamate OR (R)C(R)S-S-Propylcysteine sulfoxide
3R-hydroxy-butanoic acid

S-Allyl-L-cysteine

11-Methyl-9Z,12-tridecadienyl acetate OR Hydnocarpic acid
Several putative 4-mer Oligopeptides

Several putative 3-mer Oligopeptides

1-Phenyl-1,3-eicosanedione

Putative Metabolite

4,7,10-hexadecatrienoic acid

testolic acid

Cholesteryl ester

Eicosatetraynoic acid OR fatty-acids

old change relative to Day

Figure 5.4.10: LC-QTOF negative ionisation metabolites identified as significantly higher
or lower concentration between day and night. 43 significantly different present metabolites
were identified, 3 were removed after manual inspection of peaks, 17 were removed due to
having no METLIN hits.

5.4.6.2 TARGETED AMINO ACID ANALYSIS

The targeted quantitative analysis of the amino acids in the system between day and night also had
mixed results. The majority of amino acids were not reliably recovered and calibration curves
could not be fitted. Therefore, several key amino acids remain unprofiled. The relatively large
concentration of arginine as well as significant day-night differences suggests that this may be an

important nitrogen source for M. reisseri during endosymbiosis.

5.5 DIscussION

5.5.1 NOVEL SUGARS IMPLICATED IN THE ENDOSYMBIOSIS

One of the key findings supported by multiple lines of evidence is the existence of roles for sugars
not previously implicated in the function of P. bursaria - green algal endosymbioses. Specifically,
arabinose, raffinose and fucose.

Fucose is identified as having a significantly higher concentration during the day and the en-
dosymbiont expresses a fucose permease in both lit and dark conditions. Arabinose is similarly
significantly at greater abundance the day however, no arabinose transporter was directly iden-
tified in the endosymbiont transcriptome. It is possible that one of the MFS group transporter

identified is capable of uptake of this compound though.

191



Quantitative LCMS (QQQ) of Amino Acids in P. bursaria-M. reisseri CCAP 1660/12
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Figure 5.4.11: LC-QQQ analysis of amino acid abundances. Normalised Peak Areas Cal-
ibration was conducted using Dayl and Nightl samples at two titrations, as well as Asn-
GIn-Tryptamine and Sigma AA mixes. Calibration and quantitative analysis failed for the
following amino acids: Glutamic Acid, Tryptamine, Asparagine, Tryptophan, Isoleucine, Me-
thionine, Valine, Serine, Glutamate, Glutamine, Aspartic acid, Cysteine or Lysine. Significant
concentration differences between day and night (as determined via Welch's ‘t" are indicated
by an asterisk).
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Raffinose was both detected at significantly lower abundance during the day in the metabolomics
and a raffinose synthase predicted as a secreted protein. An uptake transporter for raffinose was
not identified in the endosymbiont but again it is possible that one of the MFS transporter may
be capable of the uptake of this compound. Alternatively, the host could encode a transporter
for raffinose uptake into the host cytoplasm. A transporter that was directly identified in the en-
dosymbiont was that for inositol. As raffinose synthase function involves the production of in-
ositol and raffinose from galactinol and sucrose (Caspi et al., 2007) this suggests that inositol is
either taken up by the endosymbiont or pumped into the PV lumen.

It seems clear that raffinose plays some significant role in the endosymbiosis especially as it is
likely to be synthesised within the PV lumen itself due to the putatively secreted peptide. Rafh-
nose has been associated with cold shock in Parachlorella kessleri (formerly C. vulgaris), accumu-
lating during cold exposure and disappearing after returning to normal temperatures. Specifically,
it has also been directly associated with cryoprotection of thykaloid membranes (Lineberger,
1980). Raffinose and another Raffinose Family Oligosaccharide (RFO) stachyose are also gener-
ated in gymnopserms during the cold season (Kandler and Hopf, 1982). Interestingly, raffinose
has been found to inhibit growth under isosomotic conditions in a C. vulgaris (Setter and Green-
way, 1979).

Therefore, it is not immediately clear what role rafhnose may play in the endosymbiosis. I
present 2 hypotheses: firstly, that it may be involved in the stability and maintenance of the PV
membrane due to its previously implicated role in cryoprotection of thykaloid membranes and
secondly, that it may form a way in which the endosymbiont can “sequester” released carbohy-
drates from the host by converting them to a format the P. bursaria host cannot uptake. This
doesn’t directly explain the significantly high concentration of raffinose at night relative to day,
however, this could relate to the storage of photosynthate in the form of raffinose in the absence
of active photosynthesis.

It is worth noting that the identification of other secreted proteins related to the hypothetical
synthesis and metabolism of complex sugars in the PV could have been missed due to poor termi-
nal resolution of transcripts during sequencing. This is particularly problematic for bulk RNAseq
and low terminal coverage and thus less trust-worthy data was identified in a preliminary analysis

of this type of transcriptomic data. Theoretically, due to the ligation step, MDA based sc-RNAseq
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shouldn’t have this issue. However, it seems likely the general noise and biases of MDA may have

rendered a reduced positional bias as a moot issue.

5.5.2 ALTERNATIVE EXCHANGED AMINO ACIDS IN P. BURSARIA-M. REISSERI

The failure of accurate quantification in the second round of LC-QQQ spectrometry for the ma-
jority of amino acids is problematic. However, this targeted approach still revealed useful infor-
mation regarding the relative abundance of certain amino acids.

Particularly, both the high concentration of arginine as well as its significantly differential
abundance between day and night indicates that this amino acid may well form a major compo-
nent of host provided nitrogen for M. reisseri. This is in concordance with previous findings sug-
gesting the importance of this amino acid in the C. variabilis endosymbiosis (Kato et al., 2006).
The presence of elements of arginine metabolism pathways such as the urea cycle in the transcrip-
tome also supports this hypothesis.

Despite not have been implicated in previous analyses as one of the key amino acid nitrogen
sources, the identification of both high quantities and differential abundance of threonine and
phenylalanine suggests that these amino acids may play a role in the host-endosymbiont barter
system of P. bursaria-M. reisseri. Additionally, the unique presence of lysine, glutamine and D-
glutamate degradation pathways in M. reisseri relative to other green algae suggests that these
amino acids also comprise an element of the host-derived nitrogen supply. The differential abun-
dances of the amino acids as well as differential numbers of reads mapping to putative amino acid
transporters indicates a potential light-dependent amino acid uptake mechanism in the endosym-
biont.

This markedly different behaviour in M. reisseri relative to the other algal endosymbionts sug-
gests that the feeding experiment results by (Kato et al., 2006) and (Kato and Imamura, 2009b)
need to be re-evaluated for M. reisseri. This also adds further evidence of a broad diversity of en-
dosymbiotic relationships and traits among the various algal endosymbioses of P. bursaria.

Unfortunately, a failure to accurately quantify and calibrate for several amino acids means
this targeted metabolomic analysis is incomplete. Of particular interest, is the remaining § amino
acids implicated in C. variabilis F36-ZK’s endosymbiosis.

There is also a potential supply of oligopeptides to the endosymbiont. Thisis evidenced by the

presence of a partial oligopeptide transporter combined with the observed high concentrations of
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various 3- and 4-mer oligopeptides. Previous studies focusing exclusively on endosymbiont utili-
sation and uptake of individual amino acids (e.g. those reviewed in (Kato and Imamura, 2009b))
may have missed on the role of these in host-endosymbiont nitrogen flux. This, therefore, merits
further analysis.

In terms of other nitrogen sources, i.e. nitrate and nitrite: NR and NiR are both present in
the M. reisseri binned transcriptome. This supports findings that M. reisseri can utilise nitrate and
nitrite. However, it is possible that these enzymes are non-functional such as the mutants present

in C. variabilis NC64A and F36-ZK.

5.5.3 POTENTIALLY MISSING TRANSPORTERS AND SECRETED PROTEINS

The identification and analysis of secreted and transporter proteins, as well as the metabolic map-
ping are fundamentally reliant on the quality and completion of the host and endosymbiont
binned transcriptomes. Transcripts may be missing from these bins either due to failure to as-
semble, cryptic MDA biases, or erroneous binning into bins other than host or endosymbiont.

It is a cause for concern that there are a number of endosymbiont secreted and transporter
proteins which have top BLASTP hits against bacterial species. On inspection many of these
do have other hits to green algal species at slightly lower expectation therefore binning could be
working as intended. However, bacterial contamination of the endosymbiont bin is a very real
possibility. Further studies should confirm the identity of these proteins using manual in-depth
phylogenetics instead of the high-throughput and potentially error prone method used in tran-
script binning.

There is evidence that binned endosymbiont transcriptomes are incomplete in the large dis-
parity in predicted transporter set sizes between the genomes and transcriptome based datasets.
However, we are not necessarily interested in all the transporters and secreted proteins that the
endosymbiont is capable of producing but merely those that it is producing while an endosym-
biont. A high level of transcription as an endosymbiont suggests that the function of given protein
plays a significant role in symbiosis. Therefore, theoretically the only major group of factors that
are both involved in endosymbiosis and systematically absent from these binned transcripts are
those of effectors related to the establishment of endosymbiosis that are not expressed during the
rest of the endosymbiotic relationship.

One set of proteins in which erroneous binning may be particularly problematic is that of
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proteins which have recently undergone endosymbiotic gene transfer (EGT) between endosym-
biont and host (Timmis et al., 2004) or that have been horizontally acquired from other sources.
In the former case, this is well observed phenomenon that has resulted in the eventual loss of
the endosymbiont in the majority of algal secondary endosymbiotic organelles as genes are trans-
ferred to the host nucleus (Keeling and Palmer, 2008; Archibald, 2005; Timmis et al., 2004; Keel-
ing, 2004). It is unknown and difficult to determine to what extent the unusual nuclear dimor-
phism and germline sequestration of the host will effect this form of transfer. However, hypo-
thetically this should present a barrier to such transfers. As some M. reisseri and Chlorella en-
dosymbionts have been demonstrated as capable of free-living and metabolic co-dependence has
putatively not become fixed it is unlikely that EGT has occurred between host and endosymbiont
as extensively as that observed in established photosynthetic organelles. Fortunately, the binning
method used means that while some peptides may have been falsely assigned to wrong bin, all
“host” and “endosymbiont” ORFs that were either so novel they lacked any homology to known
proteins or were recently acquired from bacteria were still included in this analysis, just not nec-
essarily attributed to the correct partner.

As for the latter case of HGT from other sources, this will lead to the misclassification of
proteins into the “food” or “unknown” bin and thus their discard. This is potentially problematic
as there is evidence for bacterially acquired hexose-phosphate transporters playing a key role in
the establishment of primary plastid endosymbiosis (Price etal., 2012; Karkaretal,, 2015). There
is also evidence of the acquisition of a bacterial polyamine biosynthesis pathway within the host
Paramecium (Li et al., 2015a).

Ideally, future work could expand the component analyses over the “unknown” and “food”
binned sequences in combination with synteny analyses using genomic sequences to investigate
and identify potential horizontally acquired transporters that may play a role.

Another issue with the binning approach used is the possibility of totally novel transporter
(and other proteins) not being classified due to the dependence of the binning on homology to
known sequences. Therefore, totally novel proteins would not have been identified as “host” or
“endosymbiont”. Unfortunately, this problem could only properly be resolved with a genome se-
quence for both host and endosymbiont which was outside the scope of this analysis.

Finally, there are two additional difficulties specific to transporter and secretome prediction.
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In terms of secreted proteins, without knowledge of P. bursaria’s intracellular trafficking system it
is not possible to easily infer which host peptides are secreted into the PV. For this reason, analysis
of secreted proteins focused on the endosymbiont bin as the secretion signal are generally better
conserved and established.

In the case of transporters the risk of false positives where sensors are misidentified as trans-
porters is fairly high. Only a minimal (as few as a single amino acid) divergence is sufficient to
convert a transporter protein to non-transporting sensor proteins (Lalonde et al., 1999; Bianchi
and Diez-Sampedro, 2010). However, sensor proteins are likely to play important roles in the
function of this endosymbiosis so accidental identification may not be a major issue but it does
mean transporter activity needs to be verified for all predictions.

Prediction methods used to identify transporter and secreted proteins could also be further
improved by more careful application of state-of-the-art classification algorithms. Prediction of
protein secretion could be improved using recent approaches such as recursive neural network
models like long-short term memory networks (Hochreiter and Schmidhuber, 1997; Greff et al,,
2015). These are well suited to arbitrary length sequence data so wouldn’t require work-arounds
to accommodate variable length signal peptides. They are also capable of representation learn-
ing so the identification of sequence features that best predict localisation would be unnecessary.
Alternatively, existing prediction tools could be combined in a more sophisticated way than the
conservative consensus ensemble used in this analysis. For example, the various predictors could
be combined using Bayesian model combination (Monteith et al,, 2011).

However, even with these improved predictions, it is still best to consider all analyses of these
transcriptomes as proof of presence but not proof of absence of any component. Furthermore,
any identified protein should be validated individually using immunolocalisation and (q)PCR

based analyses.

5.5.4 METABOLOMICS SHOWS PROMISE

The pilot application of metabolomics demonstrated mixed results. There was poor performance
of GC/MS with a failure to comprehensively profile carbohydrates. Several compounds strongly
implicated in the endosymbiosis were not detected e.g. maltose, and glucose. This was potentially
due to the miscalibration of gas chromatography leading to poor separation of components.

While LC/MS analyses did prove relatively successful, a careful validation of metabolites of
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interest using multi-reaction monitoring and tandem spectrometry would be necessary to make
firm predictions. Additionally, advanced novel techniques such as nanoscale secondary ion mass
spectrometry combined with microscopy and isotope labelling could theoretically allow direct
analysis of metabolites present in the PV (Kopp et al,, 2015; Legin et al,, 2014).

The targeted quantitative LC/MS of amino acids needs further optimisation and re-running
due to the inability to fit calibration curves to the majority of amino acids. Despite this, the tech-
nique did prove effective at identifying a potential role for several amino acids not previously
implicated in this endosymbiosis.

Finally, one more improvement to the metabolomics analyses would include more advanced
hypothesis testing than the corrected unequal variance t-test used e.g. Kurschke’s Bayesian BEST
algorithm (Kruschke, 2013). This has the advantage of a Bayesian inference which can be made
robust to multiple comparisons without need for extensive correction procedures via standard

multi-level approaches (Gelman et al., 2009).

5.6 CONCLUSION

This analysis of host-endosymbiont metabolic integration has lead to some promising results.
Namely, discovering quantitative data supporting the mechanism by which the host likely pro-
vides a nitrogen source to the endosymbiont. Specifically, a novel group of amino acids may well
be used in M. reisseri endosymbiosis: lysine, d-glutamate, threonine, and phenylalanine, as well
as the previously implicated arginine and glutamine (Kato and Imamura, 2009b). Additionally,
potential novel roles for carbohydrates previously not associated with P. bursaria endosymbioses,
specifically fucose, arabinose and raffinose have been identified. Unfortunately, poor resolution
and identification of carbohydrates in GC/QTOF prevents a thorough analysis of endosymbi-
otic carbohydrate metabolism. Finally, M. reisseri appears not to express elements of fatty acid
degradation present in the other algal endosymbionts. This is potentially interesting as fatty acid
metabolism has previously been identified as a key conserved function of plastids (Donaher et al,,
2009). However, further work is needed to confirm both the role and localisation of these com-
pounds and their facilitators.

Ultimately, the key finding from this analysis is that M. reisseri exhibit a range of adaptations

to endosymbiosis that are distinct from previously studied algal strains such as C. variabilis.
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In biology, nothing is clear, everything is too complicated, ev-
erything is a mess, and just when you think you understand
something, you peel off a layer and find deeper complications

beneath. Nature is anything but simple.

- Richard Preston: The Hot Zone, 1994

RNAIi in P bursaria

6.1 INTRODUCTION

6.1.1 RNAI

Post-transcriptional gene silencing (PTGS) is a highly useful experimental technique in reverse
genetic analyses. The most widely used PTGS experimental method is that of RNA-mediated
interference (RNAI) of gene expression (Fire et al., 1998). It has extensively been used in the
study of model eukaryotic organisms (Morf et al., 2013; Batista and Marques, 2011; Matthew,
2004; Ketting, 2011; Chang et al,, 2012).

RNAI covers a set of evolutionarily conserved systems across the eukaryotes with various
mechanisms of action in which the expression of particular transcripts are regulated via several
classes of transcribed small non-coding RNA (ncRNA) such as short-interfering (siRNA), micro
(miRNA) and Piwi-interacting (piRNAs) (Carthew and Sontheimer, 2009).

These systems likely originated as a form of defence against viruses and transposons (Water-
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house et al.,, 2001; Buchon and Vaury, 2006) and were present in some form in the last universal
eukaryotic ancestor (LECA) (Cerutti and Casas-Mollano, 2006; Shabalina and Koonin, 2008).
Many eukaryotes utilise these small RNA-mediated gene silencing pathways in the regulation of
their own cell expression patterns (Wu and Belasco, 2008). Despite its ancestral nature there has
been considerable diversification of this process, its function and mechanism (Ketting, 2011).
Indeed, even within the same organism, different points of the life cycle may use different RNAi
systems (Flemr et al,, 2013).

Generally RNAi pathways involve the generation of 21-28nt siRNAs from some form of RNA
precursor such as dsRNA (although ssRNA systems exist) via the function of the RNAase III
Dicer (Bernstein et al., 2001) or a related protein. These short RNAs are then bound by Arg-
onaute proteins which act alone or as part of a complex to silence the expression of sequences ho-
mologous to the siRNA (Ketting, 2011). This silencingisn’t just limited to the post-transcriptional
endonucleocytic degradation of mRNA transcripts but can also involve transcriptional inhibi-
tion and DNA elimination (Marker et al., 2014). The one unifying element of all discovered
RNAi pathways is that of the central role argonaute (AGO) proteins play (Ketting, 2011). They
are formed of two subclasses: the Ago and Piwi subfamilies (Peters and Meister, 2007) with a
range of functions and complex-forming behaviours (Ender and Meister, 2010). The magnitude
of the silencing response is occasionally amplified by the generation of more copies of the trigger
dsRNA by RNA-dependent RNA polymerases (RdRPs) (Arp et al,, 2007). On the other hand,
RdARPs can also sometimes directly generate the siRNAs (Aoki et al., 2007; Ketting, 2011). The
last universal eukaryotic ancestor (LECA) likely contained at least one Ago and one Piwi family
Argonaute protein, a Dicer and an RARP (Cerutti and Casas-Mollano, 2006).

The other main form of RNAI system present in eukaryotes is that of miRNA based systems.
These are differentiated by miRNAs being encoded by dedicated genes and displaying partial com-
plementarity to their targets whereas siRNAs are generated from exogenous dsRNAs (i.e. envi-
ronmental dsRNA from viral infection or phagocytosed bacteria (Whangbo and Hunter, 2008))
or transgenes, as described above, and involve full or near full complementarity (Shabalina and
Koonin, 2008).

On top of this, there are piRNA based systems, which are involved in germline based transpo-

son silencing (Iwasaki et al,, 2015), and the ciliate specific scan RNA (scnRNA) system. This is
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involved in the elimination of internal eliminated sequences (IESs) during macronuclear (MAC)
regeneration (Mochizuki and Gorovsky, 2004; Chalker et al,, 2013).

Experimentally, the existence and function of these systems permits a researcher to introduce
dsRNA homologous to an RNA transcript of interest and trigger targeted cell-wide RNAI of that
transcript. Unfortunately, there also several problems with RNAi as a general method. Many or-
ganisms lack active RNAI systems (although such systems can occasionally be induced (Alibu
etal, 2005)). On top of this, RNAi requires accurate sequence data to design the precursors and,
therefore, necessitates some form of sequencing. The main difficulty, however, is that of off-target
effects. These are caused when a provided RNA precursor induces RNAi in more than just the tar-
get transcript. These can lead to enigmatic phenotypic outcomes that are then falsely attributed
to the initial target. Avoidance of off-target effects requires a complete genome and/or transcrip-
tome to check a prospective siRNA against during the design stage. This further increases the
epistemological burden of attempting RNAi in a novel system.

Finally, RNAi does not necessarily induce total silencing of a given transcript and low-levels
of transcription may still occur. This, conceivably, can be sufficient to maintain the non-knock
down phenotype. This allows a researcher to falsely conclude a non-relationship between a given

transcript and phenotype.

6.1.2 RNAIIN PARAMECIUM

In addition to the ciliate specific scnRNA system, siRNA based pathways have been discovered in
the two principal ciliate model organisms: Tetrahymena thermophila (Collins and Lee, 2006; Yao
and Chao, 2005) and Paramecium tetaurelia (Galvani and Sperling, 2001, 2002). There are two
established methods for inducing RNAi in Paramecium tetaurelia: microinjection and transfor-
mation of the MAC with high-copy transgenes lacking 3’ untranslated region (UTR) (Galvani
and Sperling, 2001) and the introduction of dsRNA by either microinjection or feeding using
transformed dsRNA expressing bacteria (Galvani and Sperling, 2002).

In the transgene pathway, the 3’ truncation leads to the production of aberrant sense and an-
tisense transcripts (Galvani and Sperling, 2001; Marker et al., 2010; Beisson et al,, 2010a). Based
on the identified required components (see table 6.1.1), aberrant transcripts are processed by a
Dicer protein (Der1) (Lepere et al,, 2009) and a putative RARP complex formed of an RARP

(Rdr2) and a nucleotidyl transferase (Cid2) (Marker et al., 2014) into 23nt siRNA (Lepere et al.,
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Pathway Component Function
transgene-induced siRNA Rdr3 RdRP
Ptiwiig4 Piwi
both pathways Rdr2 RdRP
Dcr1 Dicer
Ptiwi13 Piwi
Cida Nucleotidyl transferase
exogenous dsRNA-induced siRNA Rdr1 RdRP
Cid1 Nucleotidyl transferase
Ptiwii12 Piwi
Ptiwiig Piwi
Pds1 Import of dsRNA?

Table 6.1.1: Summary of the components identified as necessary to the function of both
primary siRNA RNAI pathways in P. tetaurelia as identified by forward genetic screens in
(Marker et al., 2014).

2009). A putatively non-catalytic RARP (Rdr3) also plays an undefined role in the generation of
primary (1°) siRNAs from transgene pre-cursors (Marker et al., 2010, 2014). Finally, two Arg-
onaute Piwi proteins (Ptiwi13 and Ptiwi14) (Bouhouche et al., 2011) are involved in targeting
post-transcriptional silencing via mRNA cleavage (Bouhouche et al,, 2011; Marker et al,, 2014).

Alternatively, the exogenous dsRNA pathway can be induced by either microinjection di-
rectly into the MAC (for a transient 48 hour long silencing) or by continued feeding with a bacte-
ria experimentally modified to generate dsSRNA. Typically, this involves an E. coli with an IPTG-
inducible T7 polymerase and deficiency for RNAse III transformed with a plasmid containing a
T7 promoter and the sequence homologous to the target transcript (Fire et al., 1998; Timmons
et al,, 2001; Galvani and Sperling, 2002 ). Importantly, there is some evidence that this pathway
also is activated at low levels by ssRNA from normal food bacteria (Carradec et al., 2015).

RNA precursors are likely processed by Dcr1 (Lepere et al., 2009), and then two hypothetical
RARC (Cid1-Rdr1, Cid2-Rdr2) (Marker et al., 2010, 2014) are involved in the generation of 1°
siRNA. The second RdRC (or specifically Rdr2) is also involved in the generation of low levels of
secondary (2°) siRNA which spread along the full length of target mRNA (i.e. 3-to-5’and 5-to-3’
transitivity) in primarily antisense form (Carradec et al,, 2015). These 2° siRNAs don’t appear
to play a significant role in silencing themselves (contrary to similar systems in C. elegans where
they form the principal targeter of silencing (Sijen et al., 2007; Pak and Fire, 2007)) (Carradec
et al, 2015). Three Piwis play a role in targeting silencing. Ptiwi13 hypothetically loads the 1°

siRNA and targets cleavage of cytoplasmic mRNA (Bouhouche et al., 2011), while Ptiwi12 and
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Ptiwi1s, based on their homology to nuclear Piwi proteins, (Marker et al., 2014; Carradec et al,,
2015; Bouhouche et al,, 2011) may be involved with 2° siRNA communication with the MAC
(Carradec et al., 2015). One final protein that has been identified as necessary for the function
of feeding based dsRNA-induced RNAi is an uncharacterised novel P. tetaurelia complex protein
(Pds1) (Marker et al,, 2014). It has been hypothesised that Pds1 may play a role in the export
of RNA from the food vacuole (Carradec et al,, 2015). Therefore, theoretically microinjected
dsRNA should induce RNAi even in the absence of this protein as the microinjection circumvents
the need for Pds1 facilitated dsRNA import.

Many of these components are a product of the 3 whole genome duplication events in the
evolution of the Paramecium clade (McGrath et al,, 2014). As P. bursaria shares only the first
Paramecium clade whole genome duplication event with P. tetaurelia it is expected it should con-
tain the RNAi components identified as belonging to WGD1 (or have secondarily lost them)
(McGrath et al,, 2014). This is believed to include a single RARP gene, 6 Piwi genes, and 2 Dicer
genes (Marker et al., 2014).

Ifit is possible to experimentally induce RNAi in P. bursaria SW1 (from CCAP 1660/ 12 cul-
ture) specific hypotheses as to the necessity of hypothetically important endosymbiotic compo-
nents can be tested. For example, what is the effect on endosymbiosis of the inhibition of certain
host-derived transporters?

Similarly, what components of core P. tetaurelia RNAi pathways can be identified in the P.
bursaria SW1 (see Chapter 4) and P. bursaria Yad1g transcriptomes (see Chapter 5)? Does P.
bursaria express these components during endosymbiosis? If they don’tis there evidence of them

in the partial P. bursaria SW1 genome (see Chapter 3)?

6.1.3 RNAI “CROSS-TALK”

Evidence has emerged of the role RNAi plays in numerous host-pathogen (Nowara et al., 2010;
LaMonte et al,, 2012; Weiberg et al.,, 2013; Buck et al,, 2014) and host-symbiont (Helber et al.,
2011; Kochetal, 2013) relationships. This hasled some authors to suggest that siRNA and RNAi
mechanisms can form communication systems between diverse organisms and even across do-
mains (Liang et al., 2013; Knip et al., 2014; Weiberg et al,, 2015).

The evidence of natural food bacteria ssRNA induced RNAi “cross-talk” in P. tetaurelia (Car-

radec et al,, 2015) implicates that this process may also take place in P. bursaria. In addition to
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also being a serial phagotroph, P. bursaria acts as a host to numerous bacterial and green algal
endosymbionts. For this reason it is not inconceivable that such a mechanism of cross-talk may
play role in these endosymbioses.

Therefore, it may be informative to investigate the quantity and targets of potential cross-talk
between host and endosymbiont in terms of “collisions” i.e. matching 23nt RNA strings between
host and endosymbiont transcripts bins. Contextualising these values across the diversity of the
tree of life is important. “Collision” levels have implications for the regulation and expression of

exogenous dsSRNA RNAi pathways by the host.

6.2 AIMS

The goal of this chapter is to investigate both the practical and theoretical utility of RNAi systems

in P. bursaria. Specifically:
« Is P. bursaria capable of microinjection or feeding based exogenous dsRNA siRNAi?

« What components, previously identified as necessary, of these pathways are present and

expressed in P, bursaria?

« To what degree could potential RNAi “cross-talk” occur in P. bursaria and is this elevated
compared to what might be faced in Paramecium species without eukaryotic endosym-

bionts?

6.3 METHODS

6.3.1 RNAI CONSTRUCTS

All RNAi methods were based on previously published protocols, specifically (Galvani and Sper-
ling, 2001, 2002; Beisson et al., 2010b).

Six different constructs were created featuring genes whose knock-down induces known phe-
notypes in P. tetaurelia (see table 6.3.1). All inserts were designed in the same manner, firstly P.
tetaurelia sequences were taken from the P. tetaurelia genome. These were then used as BLASTN
queries against the entire unbinned P. bursaria-M. reissieri SW1-ZK transcriptome. The insert se-

quences were then determined using the returned P. bursaria sequences. Each insert was cloned
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Figure 6.3.1: Schematic map of the L4440 vector used for the RNAi experiments. Site of
the insert is highlighted in purple with the T7 promoters shown in green and the ampicillin
marker in red. Figure was adapted from the unpublished Fire Lab C. Elegans vector kit via
Addgene (https://www.addgene.org/1654/).

into an L4440 vector featuring two convergent T77 promoters and an ampicillin resistance marker

(shownin fig. 6.3.1).

6.3.1.1 RNAI FEEDING

For feeding experiments the vectors were transformed into E. coli HT115-DE3. This strain is
deficient for RNAse III and features an IPTG inducible T7 polymerase under the control of a

Plac promoter. Method used was as described in (Beisson et al., 2010b). RT-PCR using standard

Gene Function RNAi phenotype in Vector Design Reference
P. tetaurelia

epiz Epiplasmin “Monstrous” cells 500 bp via Pst] and HindIII (Damaj et al,, 2009)

NSF Membrane fusion factor Lethal 500 bp via PstI and HindIIl | (Galvani and Sperling, 2002)
pTMB.422¢ Binding protein Lethal 500 bp via Pst] and HindIII (Nowack etal., 2011)

bug22 Basal body/ciliary protein Slow swimming and death 313 bp via Xbal and HindIII (Laligne etal,, 2010)

BBS7 Ciliary ion transport Fewer, shorter cilia 486 bp via Xhol and HindIII (Valentine et al,, 2012)

PGM PGM endonuclease Post-autogamous cells unable to resume normal growth | so0 bp via PstI and HindIII (Baudry etal., 2009)

Table 6.3.1: Details of RNAI vectors used in dsRNA experiments. All constructs were
cloned into a L4440 vector and used an Ampicillin resistance markers.

205



https://www.addgene.org/1654/

methods was conducted on the transformed cultures to confirm expression of the dsRNA.

Bacterial pre-cultures were started using a single colony picked from an LB plate containing
so ugl™ ampicillin and 12.5 ug 1™ tetracycline. This picked colony was grown overnight in LB
medium with the same antibiotics. The overnight culture was then diluted 50 fold and grown
with shaking at 37 °C up to an ODs,, 0f 0.4 to 0.6. IPTG was then added at a concentration of
0.4mM and shaken for 3 hours at 37 °C. 30 ml of this culture was centrifuged for 2 minutes (3100
x g), then the supernatant removed and the pellet washed twice in Paramecium growth medium.
The pellet was resuspended in Paramecium medium with 0.4mM IPTG, 100 pug ™" ampicillin and
adjusted to a final ODy,, of 0.1. 1 pl of beta-sitosterol (at 4 mg ml ™" in ethanol) was added to each
5 ml of medium.

For the actual feeding, 10 ml P. bursaria CCAP 1660/ 12 culture were centrifuged at 8oox g
for 10 minutes and re-suspended in 1 ml of supernatant. 9 ml of the induced bacterised media
was then added. The sample was then incubated in a tissue culture flask at 27 °C. Feeding was

repeated for each day of analysis.

6.3.1.2 RNAI MICROINJECTION

Microinjection used the same protocol as described in (Beisson et al., 2010a) but only tested the
PGM and epi2 constructs. Briefly, the circular plasmid is linearised using a unique restriction
site, and purified using phenol:ethanol extraction and a purification column. It is then dissolved
in H,O at a minimum concentration of s mgml ™. Cells were washed twice by picking with a mi-
cropippete in Dryl-BSA wells before being placed into individual droplets on a glass cover slip and
covered in parafhin oil. The cover slip was then placed onto a microscopy stage and a microinjector
used under 10X magnification to inject linearised construct directly into the macronucleus.
Microinjection controls were also conducted in which GFP was injected into the MAC and
the fluorescence observed. Successful microinjection would feature fluorescence localised to the

MAC.
6.3.2 ANALYSIS OF RNAI PATHWAY

6.3.2.1 SURVEY FOR RNAI COMPONENTS IN P. BURSARIA

Using the canonical seed sequences identified in P. tetaurelia by (Marker et al,, 2014) (see ta-

ble 6.3.2) the entire assembled P. bursaria-M. reisseri SW1-ZK transcriptome predicted ciliate
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Gene | P.tetaurelia Accession | Length
Rdr1 PTETGS8500012001 4319
Rdr2 GSPATGo00036857001 4162
Rdr3 GSPATGo00006401001 3292
Cid1 PTETGo100013001 1051
Cid2 PTETG13400003001 1083
Pds1 PTETG600032001 2084
Dcr1 GSPATGo0021751001 5394
Ptiwii2 | GSPATGoooo1709001 2315
Ptiwiiz PTETG4800007001 2483
Ptiwiig4 | PTETG16300003001 2428
Ptiwi1s | GSPATGoo0005370001 2315

Table 6.3.2: Table of the RNAi pathway components identified by (Marker et al., 2014).
Includes their “canonical” accession in the P. tetaurelia MAC genome.

encoded peptides and P. bursaria-C. variabilis Yad1g1N transcriptome predicted ciliate encoded
peptides with BLASTP and a minimum expectation of 1.

Finally, ifa component could not be identified in the transcriptomes it was additionally searched
forin the assembled P. bursaria-M. reisseri SW1-ZK genomic contigs (over soo bp) using TBLASTX
with a minimum expectation 1e~>. This would theoretically allow the identification of present but
non-expressed components.

Additionally, the other sequenced Paramecium genomes were searched using BLASTP via
ParamediumDB (Arnaiz et al., 2007; Arnaiz and Sperling, 2011b). Specifically, P. caudatum (Mc-
Grath et al,, 2014), P. biaurelia, P. primaurelia, P. sexaurelia and P. multimicronucleatum. Finally,
T. thermophila (Eisen et al,, 2006) and Oxytricha trifallax (Swart et al., 2013 ) predicted proteins

were searched to form outgroups during phylogenetic analysis.

6.3.2.2 PHYLOGENETIC ANALYSIS OF RNAI PATHWAY

Peptide sequences were aligned using MAFFT (Katoh et al., 2002) and manually masked in Seav-
iew (Gouy et al,, 2010). Sequences that were too divergent to align were removed, or in the case
of the RARPs: the alignment of Rdr1 and Rdr2 was split from that of Rdr3 to form two separate
alignments. Similarly, sequences that were identical to one another were removed at this stage.
Substitution models were fitted using ProtTest3 on the basis of the Bayesian Information Cri-
terion (BIC) (Darriba et al,, 2011). Phylogenies were then generated using RAXML with 1000

non-rapid bootstraps and MrBayes with 2 runs of 4 MCMCMC chains run for 2,000,000 gener-
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ations or until convergence. MCMC convergence was checked and burn-in determined using
Tracer (Rambaut and Drummond, 2007). Sequences forming long branches were removed af-
ter inspection of these phylogenies and the alignment, masking, model prediction and phylogeny

generation steps were repeated.

6.3.2.3 STRUCTURAL PREDICTION AND FUNCTIONAL ANALYSIS

The structure of Pds1 was predicted from the P. tetaurelia protein sequence (PTETP600032001)
using RaptorX (Killberg et al., 2012). This prediction used default settings and was based on a
weighted combination of physicochemical features of the amino acids sequence, 3D structural
alignments, entropic modelling and domain prediction (Killberg et al., 2012). The predicted
structure was then plotted from the PDB file using PyMOL (Delano, 2002).

Using the PDB structure from RaptorX, functional prediction was attempted using ProFunc
(Laskowski et al., 2005 ), CombFunc (Wass et al., 2012 ) and PredictProtein (Rost et al., 2004 ) all

with default settings.

6.3.3 DSRNA CROSS-TALK ANALYSIS - “EDICER”

In order to investigate the prevalence of “cross-talk” between host and endosymbiont a tool to
analyse short sequence collisions between two sets of transcripts was created. “eDicer” is built
around the Jellyfish k-mer counter (Margais and Kingsford, 2011) and the k-mer Analysis Toolkit
(KAT) (Clavijo et al., 2015). Using efficient k-mer hashing it allows the identification of shared
k-mers between two sets of sequences. As Dcr1 in P, tetaurelia generates 23nt fragments, by iden-
tifying the number of shared 23-mers between two datasets e.g. the set of host and endosymbiont
transcripts we can identify the number of potential RNAi “collisions” or cross-talks between the
two species.

For each comparison between a set of query transcripts and a reference set of transcripts (en-

dosymbiont transcripts in this case) the following values were calculated and tabulated:

« Number of k-mers in the query, in other words the length of the query in k-mers:

le’lil len (‘xn)

w

for a set x containing s transcripts and using a k-mer size of w.
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« Number of unique k-mers in the query, the non-redundant length of the query.
« Number of shared k-mers (“collisions”) between query and subject bin.

« Number of unique shared k-mers between query and subject bin.

« Shared k-mers normalised by subject length in k-mers.

« Shared k-mers normalised by the subject length in unique k-mers.

« Shared unique k-mers normalised by subject length in k-mers.

« Shared unique k-mers normalised by the subject length in unique k-mers.

In order to contextualise the number of collisions between the 2 host and 2 endosymbiont
transcript sets I analysed the collisions between the two sets of endosymbiont transcripts with
several other datasets.

These datasets were composed of predicted or sequenced transcriptomes from the following
groups: bacteria, archaea, eukaryotes, green algae, and the ciliates. Sequences were selected to
sample the breadth of the sequenced diversity of each group as fully as possible.

Specifically, 3 ciliate transcript sets were used Paramecium tetaurelia, Tetrahymena thermophila
and Oxytricha trifallax along with § green algae Chlamydomonas reinhardtii, Coccomyxa subellip-
soidea C-169, Chlorella variabilis NC64A, Micromonas pusilla RCC299, and Ostreococcus lucimar-
inus. The eukaryote dataset was composed of 58 transcript sets (section A.3.1), the bacterial 130
(section A.3.2), and the archaea 89 (section A.3.3).

Tabulated values were then analysed statistically using standard python tools outlined in the
methods chapter.

In the course of this work improvements made to KAT were submitted and merged back into

the core KAT development codebase (https://github.com/TGAC/KAT).

6.4 REsuLTs

6.4.1 INDUCTION OF RNAI

There was a total failure to induce RNAi related phenotypes in feeding experiments for any of the

vectors. Despite observation for several days, continuous refeeding with transformed E. coli (and
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RT-PCR proof of dsRNA expression) none of the P. bursaria CCAP 1660/12 cultures displayed
any altered phenotypes as a consequence of feeding experiments.

Microinjection was attempted using just the PGM and epi2 constructs due to time constraints.
P. bursaria tended to burst after a single injection attempt. As a control, an attempt was also made
to inject GFP into the MAC. Unfortunately, despite numerous attempts it was never possible to
observe fluorescence localised to the MAC. This suggests microinjection was never successfully

achieved.

6.4.2 RNAIPATHWAY COMPONENTS
6.4.2.1 Dcr1

A single Dcr1 orthologue was clearly identified in each of the two P. bursaria host transcriptomes.
Phylogenetic analysis (fig. 6.4.1) recovered a phylogeny matching the established ciliate taxon-
omy (Aury et al., 2006; Fokin et al., 2004; Swart et al., 2013) with strong support for P. bursaria

as the the outgroup to the rest of the Paramecium clade.

6.4.2.2 PpSs1

There were no hits for Pds1 in any of the 3 P. bursaria datasets (both transcriptomes and the
genome). There were homologues in each of the other Paramecium species i.e. P. sexaurelia, P.
biaurelia, P. primaurelia, P. multimicronucleatum and P. caudatum but not T. thermophila or O. tri-
fallax (fig. 6.4.2).

As this protein has no assigned function based on sequence homology (Marker et al., 2014;
Carradecetal,, 2015) but potentially plays an important role in the uptake of RNA from vacuoles
at attempt was made to infer function by structural analysis.

The structure of Pds1 (fig. 6.4.3) was predicted from the P. fetaurelia sequence via RaptorX
(Killberg et al., 2012). Unfortunately, no function could be assigned to this structure using Pro-
Func (Laskowski et al., 2005 ), CombFunc (Wass etal., 2012 ) or PredictProtein (Rost et al., 2004).
No structural hits were found against known enzyme active sites, ligand-binding sites or DNA-

binding templates in ProcFun. Therefore, no function could be assigned to this protein.
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Tetrahymena thermophila [gi_50897085_dbj_BAD34723.1]

Oxytricha trifallax [Contig17740.0.g110_protein]

—Paramecium biaurelia [PBIGNP07629]

14.2%/0.41

— Paramecium tetaurelia Dcrl1 (Marker, 2014) [GSPATP00021751001]
100%/0.99|

100%/1.00
of 100%/1.00 | —Paramecium primaurelia [PPRIMP21835]

30.8/50] — Paramecium sexaurelia [PSEXPNG07454]

100%/1.00 —— Paramecium caudatum [PCAUDP17596]

Paramecium multimicronucleatum [PMMNP06401]

Paramecium bursaria Yad1lg [TR10970_c0_g1_i3_m.150314]

100%/1.00 L
Paramecium bursaria SW1 [comp4263_seq4_m.73243]

Figure 6.4.1: Dcrl Phylogeny (1196 sites) inferred using RAXMI with LG+G+F and 1000
non-rapid bootstraps. Bayesian PP were inferred using MrBayes with 2 runs of 4 chains run
for 2,000,000 generations (5% burn-in) and the LG+G model. P. bursaria peptides are high-
lighted in blue whereas P. tetaurelia components identified by (Marker et al., 2014) are indi-
cated in red. Phylogeny is largely consistent with established ciliate phylogenies.
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Paramecium multimicronucleatum [PMMNP02700]
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Paramecium multimicronucleatum [PMMNP02686]
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'— 31.2%/0.64

Paramecium primaurelia [PPRIMP00625]

Paramecium caudatum [PCAUDP0810]

0.2

Figure 6.4.2: Pdsl Phylogeny (424 sites) inferred using RAXML with VT+G+F and 1000
non-rapid bootstraps. Bayesian PP were inferred with MrBayes (2 runs of 4 chains for
2,000,000 generations, 5% burn-in) with VT+G and annotated. This phylogeny is consistent

with the general taxonomy of the ciliate clade.
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Figure 6.4.3: RaptorX Predicted Structure of P. tetaurelia Pdsl protein
(PTETP600032001). No functional annotations could be made using this structure.

6.4.2.3 CiIp

Two Cid orthologues were identified in each P. bursaria transcriptome. Additionally, a closely
related Cid3 orthologue was identified in the other Paramecium sequences.

Phylogenetic analysis (fig. 6.4.4) showed an unclear picture with both the Yad1g Cid peptides
and 1 of the SW1 peptides branching with moderate support (86.7% bootstraps and a PP of 0.69)
within a clade composed of Cid1 and Cid3. Unfortunately, there was poor support (59.1%/0.54)
for the P. bursaria sequences forming a sister to these clades, therefore their exact placement is
unclear. Additionally, the other SW1 orthologue branched as the outgroup to all remaining Cid
with high support (100%/1.00).

This suggests that the orthologues present in Yad1g and one of the orthologues in SW1 may
be the unduplicated ancestor to Cid1 and Cid3 (named Cid1-3 for convenience).

In general this phylogeny is consistent with a scenario in which a single ancestral Cid has un-
dergone duplication resulting in Cid2 and a Cid1-3 ancestor either before or after the branching
of P. bursaria. If this divergence occurred before this speciation then Cid2 has been lost in P. bur-
saria. Regardless, there is a clear subsequent duplication and divergence of the Cid1-3 ancestor
into the modern Cid1 and Cid3 between the P, bursaria and P. caudatum branches.

Interestingly, the timing of these events and the presence of all 3 Cid homologues in P. cau-
datum (which shares the single ancient WGD with P. bursaria) suggests that this pattern is not

directly related to the polarised position of WGD in Paramecium.
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Figure 6.4.4: Phylogeny of Cid1, Cid2, and Cid3 (268 sites) inferred using RAXML with
rtREV+G and 1000 non-rapid bootstraps. Bayesian PP were inferred using MrBayes
(2,500,000 generations with 2 runs of 4 chains and a 10% burn-in). Phylogeny shows a po-
tential orthologue of an ancestral pre-divergence version of Cidl and Cid3 (named Cid1-3)
in P. bursaria Yadlg and SW1 and an uncertain Cid orthologue possibly related to Cid2 (de-
pending on timing of the Cid1-3 and Cid2 divergence in P. bursaria SW1).
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6.4.2.4 RDR

Two putative sequences were identified by Rdr1 and Rdr2 searches in each P. bursaria. Phylo-
genies of these sequences (fig. 6.4.5) indicate that P. bursaria has an orthologue of Rdr2 (strong
support (99.9%/1.00) of an outgroup to the Rdr2 sequences). The other sequences from both
transcriptomes branch basally to the other Paramecium RdRPs with moderate/weak support and
may nor may not be an orthologue of Rdri.

The Rdr3 analysis didn’t identify any hits in the T. thermophila or O. trifallax outgroups but
did find an orthologue in both P. bursaria transcript sets. These branched as a sister to the other
Paramecium with strong support suggesting that they may be orthologous to the P. tetaurelia Rdr3.
The phylogeny recapitulated the taxonomy of the ciliates (fig. 6.4.6). However, the lack of homol-
ogy to the other Rdrs indicates that this Rdr may have been an independent innovation arising

basally to the Paramecium clade and is unrelated to Rdr1 and Rdra.

6.4.2.5 Prwi

There were a large number of Piwi detected homologues across the datasets. Specifically, 16 Piwi
in the P. bursaria SW-1 transcriptome and § in the partial genome, and 17 in the P. bursaria Yad1g
transcriptome. Due to the large size of this family, large number of paralogues and relatively short
sequences, phylogenetic inference of these sequences proved largely intractable. There are Piwi

homologues present in P. bursaria although their exact relation and function is unknown.

6.4.3 DSRINA COLLISIONS

The total number of unique collisions between the endosymbionts and the various classes of sub-
ject transcriptomes were plotted (fig. 6.4.7). This showed next to no collisions with Archaea,
moderate levels of total collisions with Bacteria and generally higher levels of collision with the
Eukaryotes. The elevated number of collisions with eukaryotic transcriptomes is not surprising
given their phylogenetic position and gene content. However, the difference in total collisions be-
tween the Archaea and Bacteria is potentially interesting. It is possible this reflects the sequencing
bias in Archaea towards extremophiles which often have compositional adaptations.

Additionally, as might be expected from their close relationship with the green algal endosym-
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Oxytricha trifallax [gi403346586]

Tetrahymena thermophila [XP_001026321.2]

Figure 6.4.5: Phylogeny of Rdrl and Rdr2 (691 sites) inferred using RAXML with LG+G-+F
and 1000 non-rapid bootstraps. Bayesian PP were inferred using MrBayes (2,000,000 gener-
ations with 2 runs of 4 chains and a 5% burn-in) and annotated onto the RAXML phylogeny.
Phylogeny shows a homologue of Rdr2 in P. bursaria as well as a potential ancestral or Rdrl
homologue.
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Figure 6.4.6: Phylogeny of Rdr3 (432 sites) inferred using RAXML with JTT+G+F and
1000 non-rapid bootstraps. Bayesian PP were inferred using MrBayes (2,000,000 generations
with 2 runs of 4 chains and a 5% burn-in) and annotated onto the RAxML phylogeny. Phy-

logeny shows the presence of a likely Rdr3 in P. bursaria.
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Collisions with Endosymbiont Transcripts
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Figure 6.4.7: The number of unique 23-mer collisions between transcripts from the C. vari-
abilis IN and M. reisseri SW1-ZK endosymbionts and different classes of subject transcripts.
The y-axis is truncated to better separate the classes however, the the only taxa that had
more than 6000 unique collisions were Coccomyxa variabilis NC64A and Chlorella subellip-
soidea C-169 , Arabidopsis thaliana, Chlamydomonas reinhardtii and transcripts from the
two host bins P. bursaria SW1 and P. bursaria Yadlg. This suggests RNAi-cross talk could
be occurring between the host and endosymbiont and would likely occur at higher rates than
occurs between Paramecium and their bacterial prey.

bionts some of the most frequent collisions were with the other green algae. Interestingly, the
three ciliate species displayed a generally low number of collisions but there was moderate to
high levels of collision against the two P. bursaria host transcriptomes. This potentially indicates
a higher level of collision between the active host genome rather than its total genome.

The collision level was relatively consistent for both endosymbionts when compared to the
same subject (fig. 6.4.8). However, there are visible exceptions where a given subject transcrip-
tome has far more collisions against one of two endosymbiont transcripts than the other. This
can be seen in the line in the pair-plots with sharp angles instead of being close to level.

This is particularly obvious in the comparison of collisions between the host endosymbiont
pairs (fig. 6.4.9). There is a considerable difference in collisions for the C. variabilis 1N endosym-

biont from the Yad1g1N culture with next to no collisions against the P. bursaria from the other
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Figure 6.4.8: Pair-plot of the normalised collisions in Archaea, Bacteria and Eukaryotes
showing the relative consistency of the number of hits between the two endosymbionts.
Lines join the number of collisions to the same subject transcriptome in the different en-
dosymbiont transcriptomes. Colour is merely for illustration purposes and has no signifi-
cant meaning. The plot shows that overall the collisions are relatively consistent but there
are aberrations where one endosymbiont has far more collisions to a given subject than the
other.

culture but a high level of collisions against its own host. Interestingly, M. reisseri was relatively
consistent across both hosts with only slightly more hits to its own host. This suggests a poten-
tial problem in the binning of endosymbiont and host transcripts, especially in the P. bursaria-C.
variabilis Yad1g1N transcriptome.

In order to test to what degree the number of collisions was related to the length of the subject
query, a simple linear regression was conducted (fig. 6.4.10). This demonstrates there is at least a
partial linear dependence between the length of the query and the number of collisions as would
be expected.

Normalising the unique number of collisions by the unique length of the subject predicted
transcriptome led to some interesting results (fig. 6.4.11). Specifically, collisions with eukaryotic
taxa were largely reduced to being on-par with collisions against Bacteria. While collisions against
the ciliates relatively disappearing, there was still considerable levels of potential RNAi cross-talk

against the host transcriptomes and green algae.
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Pair-Plot of Host and Endosymbiont Collisions
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Figure 6.4.9: Pair-plot of the total number of collisions between the two endosymbiont
transcriptome sets and the two host transcriptome sets. M. reisseri has a relatively consis-
tent number of collisions against both hosts, however, the C. variabilis transcriptome has a
significantly higher number of collisions against it's own endosymbiont. This suggests poten-
tial issues with the binning of transcripts in the YadlglN transcriptome.

6.5 DiscussioNn

6.5.1 No DSRNA RNAI INDUCIBLE PHENOTYPES IN P. BURSARIA SW1

Despite numerous attempts, all feeding experiments failed to induce any of the RNAi knockout
phenotypes. RT-PCR tests (not shown) with the Bug22 and BBS7 constructs demonstrated that
the E. coli was successfully transformed and could inducibly express the dsSRNA. This indicates
that dsRNA is either incapable of escaping the digestive vacuole or that P. bursaria does not have
an active pathway for exogenous dsRNA induced RNAi.

The potential failure of microinjection of dsRNA directly into the MAC to elicit RNAi pheno-
types would support the absence of an active dsSRNA induced RNAi pathway. However, the high
methodological difficulty involved in identifying and injecting the MAC without lysing the cell
(fig. 6.5.1) means microinjection may have only failed to induce RNAi due to failure to correctly
microinject P, bursaria. P. bursaria was particularly prone to lysis relative to P. tetaurelia and there
were greater issues with trichocysts blocking the microinjector. Attempts made to inject GFP
into the MAC also failed to generate fluorescence localised to the MAC. This indicates that the
failure of microinjection is primarily technical and cannot be used to make inferences about the

state of the RNAi pathway in host.
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Collisions by Query Length Against Endosymbiont Transcripts
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Figure 6.4.10: Linear Regressions of the relationship between the number of collisions as
query length increases. Features points from collisions with both C. variabilis 1IN and M.
reissieri SW1-ZK. Dark blue cloud indicates 95% confidence intervals. The top plot shows to-
tal collisions against total length whereas the bottom analysis only looks at unique collisions
against unique length so theoretically ameliorates the effect of repetitive transcripts/many
isoforms. Both show a clear if noisy (correlation coefficients of 0.18085 and 0.02811 respec-
tively) linear relationship and thus support that the size of a transcriptome plays a role in
the number of collisions.

221



0.0040

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

Unique Collisions/Unique Length

0.0005

0.0000

Figure 6.4.11: The number of collisions between transcripts from the C. variabilis 1N and
M. reisseri SW1-ZK endosymbionts and different classes of subject transcripts normalised by
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the unique length of those subjects.

Figure 6.5.1: DAPI stained P. bursaria MAC to demonstrating how difficult it is to accu-

rately identify the location of the MAC for microinjection. Top left panel shows 3 P. bursaria
cells under light microscopy as they appear when attempting microinjection. Top right shows
fluorescence from DAPI staining to demonstrate where the MAC nuclei are location. Bottom

panel is an artificial overlay of the light microscopy and DAPI staining.
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Unfortunately, the alternative transgene RNAi methodology (Galvani and Sperling, 2001)
(which was not attempted) also involves microinjection of the MAC with the transgene construct
itself. Therefore, even if the transgene pathway is present and active it may still not be possible to

reliably induce RNAi in P. bursaria.

6.5.2 MISSING COMPONENTS OF RNAI PATHWAY IN P. BURSARIA

An investigation into the RNAi pathway components identified by (Marker et al., 2014) revealed
the absence of one required component for the exogenous dsRNA pathway (Pds1) and, depend-
ing on the function of a putative ancestral Cid protein, the absence of a factor in the common
pathway or just exogenous dsRNA pathway (fig. 6.5.2).

Pds1 is totally absent outside of the post-P. bursaria Paramecium clade. A phylogenetic analy-
sis of Pds1 sequences (fig. 6.4.2) recapitulated the established Paramecium taxonomy (fig. 1.2.3).
This suggests that Pds1 was either acquired after the divergence of P. bursaria and P. caudatum
or was lost in P. bursaria. The pattern of paralogues would more likely support the former sce-
nario. The lack of paralogues (with the exception of a terminally duplicated P. multimicronuclea-
tum copy) in the P. aurelia complex species is interesting. As the presence of Pds1 in P. caudatum
indicates that this should have undergone duplication during the two subsequent WGD events.
Potentially, this represents serial losses in these species.

It is possible that Pds1 is present and just hasn’t been recovered in the partial transcriptomes
because it is not being transcribed (or is transcribed at a very low level) during endosymbiosis. It
is also possible it is missing in the partial genome due to the incompleteness of this data. However,
the combination of being missing in all 3 datasets as well as any non-Paramecium ciliates indicates
that it is likely not present in P. bursaria.

The Cid proteins are difficult to resolve, either P. bursaria has an undiverged ancestral version
of the Cid proteins or has a Cid1-3 ancestor and has secondarily lost Cid2. This depends on the
timing of the Cid2 and Cid1-3 divergence, if it occurred after the branching of P. bursaria from
the rest of the clade then the latter scenario is more likely and vice versa.

If the latter scenario is true then Cid2 has been lost and if the P. bursaria RNAi pathways
require the same components as P. tetaurelia this may mean both the transgene and dsRNA path-

ways might not be active. Additionally, if the Cid1-3 ancestor or the ancestral undiverged Cid
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Figure 6.5.2: Coulson plot showing the absence/presence of RNAi pathway factors identi-
fied in P. tetaurelia (Marker et al., 2014) across the Paramecium clade.

does not have the same function as P. tetaurelia’s Cid1 then the exogenous dsRNA pathway may
not be active in P. bursaria.

The unresolved Piwis also represent potential issues with the RNAi pathway but the only way
to thoroughly investigate the roles of these proteins would be targeted mutagenic screening or a
similar approach.

The low levels of sequence homology suggests independent innovation of Rdr3 and poten-
tially sheds doubt on its relationship to the ancestral Rdr that this analysis confirms was likely
present in was present in the first WGD (Marker et al,, 2014).

Interestingly, the general disposition of paralogues across the Paramecium clade does not reca-
pitulate the three established WGD events in this group. For example, there is a relatively consis-
tent number of paralogues of all components, especially RARPs and Cid proteins in P. caudatum
despite this clade having undergone the same number of WGD as P. bursaria and not sharing the

two recent WGD with the majority of the remaining Paramecium
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Figure 6.5.3: Diagram showing the Paramecium clade with Tetrahymena outgroup show-
ing the putative evolutionary scenarios behind the currently observed distributed of RNAI
factors.

6.5.3 ENDOSYMBIONT “COLLISION” HYPOTHESIS

Hypothetically, Paramecium bursaria may have deactivated/lost feeding induced RNAi (specifi-
cally the uptake of RNA from vacuoles) as a consequence of the greater levels of potentially delete-
rious cross-talk between it and its eukaryotic green algal endosymbionts. As an exogenous RNAi
response is not essential for viability in P. tetaurelia (Marker et al., 2014) loss of this system in P.
bursaria may not have a high fitness cost.

On first glance, the high levels of collisions between endosymbiont transcripts against host
and eukaryote classes in general support this hypothesis (fig. 6.4.7). However, there were low
levels of collisions between endosymbiont transcripts and ciliate transcripts indicating that the
collision levels observed between host and endosymbiont require an additional explanation. The
first scenario is that the active host transcriptome during endosymbiosis is not representative of all
possible host transcripts and features a much higher level of collision with the endosymbiont. The
second scenario is that the levels of collisions between host and endosymbiont actually reflects
misbinning of endosymbiont transcripts as belonging to the host. A comparison of the collisions
of each endosymbiont against its own host and the other host P. bursaria (fig. 6.4.9) suggests that
binning error may explain some of this difference and that the binning the Yad1g1N transcrip-
tome has potentially more issues than the SW1-ZK (CCAP 1660/ 12) transcriptome. This might

be explained by the fact that only half the sequenced libraries in Yad1g1N actually contained the
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C. variabilis 1N endosymbiont as this dataset originated from an an analysis of transcriptomic
profiling of P. bursaria with and without its endosymbiont (Kodama et al,, 2014).

There is a linear relationship between the unique size of a transcriptome in terms of 23-mers
and the number of collisions (fig. 6.4.10). This is expected as a longer set has a higher probability
of a random match by chance. When the number of collisions is normalised by the length of
the subject (fig. 6.4.11) the level of collisions from eukaryotes is largely on-par with those of the
Bacteria. However, as eukaryotes have larger genomes the un-normalised number of collisions is
more reflective of biological reality. Indeed, the size and diversity of their transcriptome may be
the reason why eukaryotic cross-talk is potentially more problematic than that of bacterial cross-
talk.

It might be interesting to test the linear relationship between phylogenetic relatedness and
the number of k-mer collisions. For example, phylogenetic distances between the endosymbiont
and various taxa could be derived from an established published multi-gene analysis that includes
these species and regression conducted using this as a feature.

One down-side of the efficient k-mer hashing based “eDicer” design is that it only finds exact
matches. RNAI has been found to not always require exact sequence matches to induce knock-
down (Elbashir et al., 2001) therefore, this analysis potentially misses a large amount of near-
identical collisions. Fortunately, it is probably a relatively safe assumption that the number of
identical collisions correlates strongly with the number of near-identical collisions.

Finally, while this may not have thoroughly resolved the question of matches “eDicer” may
form a useful tool in the rapid screening of off-target effects in the RNAI analyses in different
organisms. It is considerably more efficient than than cutting and alignment based methods such

as that offered on ParameciumDB (Arnaiz and Sperling, 2011a).

6.6 CONCLUSIONS

RNAi induced phenotypes could not be created in P. bursaria SW1 from CCAP1660/ 12 via feed-
ing experiments. The absence of Pds1 in P. bursaria offers a potential explanation for this as this
protein has been implicated in playing some undefined role in the uptake of RNA (dsRNA or ss-
RNA) from digestive vacuoles (Carradecetal,, 2015). As “eDicer” identified that there are alarge

number of 23-mer collisions between P, bursaria transcripts and eukaryotic transcriptomes (espe-
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cially the green algal endosymbionts) the loss/deactivation of the uptake of RNA from digestive
(or potentially perialgal) vacuoles could be a consequence of having a eukaryotic endosymbiont
in P, bursaria. The relatively lower levels of RNAI cross-talk between Paramecium and bacterial
endosymbionts and/or food species may prove less deleterious than eukaryotic cross-talk.

Due to Pds1 onlylikely being involved in uptake from a food vacuole it is possible that dSSRNA
could still be induced by direct microinjection. Similarly, microinjection of transgenes may still
be possible. Unfortunately, microinjection has proven difficult technically in P. bursaria. Further
optimisation of the experimental method and training is required to thoroughly test the activation
or deactivation of injected dsRNA or transgenes.

Alternatively, the potential ancestry of the Cid proteins in P. bursaria may indicate a deactiva-
tion/absence of RNAi by the pathways identified by (Marker et al,, 2014) in P. bursaria depending
on the relative functionality of this ancestral form. Further analysis of RNAi systems in P. bursaria

and other Paramecium species would be required to thoroughly answer this question.
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“a typical symbiotic Chlorella strain common to all P. bur-

saria strains does not exist”

- Reisser et al. (1988)

Conclusions and Recommendations

There were 3 main objectives to this research:

« Assessing the utility of P. bursaria and its endosymbioses with green algae as a model or-

ganism for the study of the evolution of endosymbiosis.
« Generating “omic” resources to inform further analysis of this system.

« Investigating the utility and feasibility of current MDA-based single cell genomic and tran-

scriptomic sequencing methods in the analysis of complex multi-member single-celled eu-

karyotic systems.

Review ofliterature established that Paramecium bursaria and its 4 algal endosymbionts: Chlorella
variabilis, Chlorella vulgaris, Coccomyxa sp., and Micractinium reisseri make theoretically good model

organisms for the study of secondary photosynthetic endosymbioses. This is due to them being

believed to share:
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« awell-developed background literature.

« facultative endosymbioses allowing elimination of the endosymbiont and re-introduction

experiments.

« the potential of a functional and tractable RNAi system for hypothesis testing via gene

transcription knock down.
« easily culturable and diverse available cultures.

However, with the exception of one transcriptomic analysis (Kodama et al., 2014) there have
been no analyses of these systems using contemporary transcriptomic, metabolomic or genomic
techniques.

Unfortunately, an investigation of elimination of the endosymbiont in the P. bursaria -M. reis-
seri culture revealed that this endosymbiosis may, in fact, represent an obligate system. Specifi-
cally, the P. bursaria SW1 host may be an obligate host of an algal endosymbiont. Even though
three separate elimination methods and a range of treatment concentrations were attempted (to
minimise the risk that the host death was related to a susceptibility to a specific treatment) all
methods resulted in the same eventual host death.

It is uncertain from these results whether the M. reisseri algal endosymbionts are similarly
obligate on their host. This could be tested by assessing whether an axenic culture of M. reisseri can
be established. One method of attempting this could be to exploit the robustness of the chitinous
cell wall of the algae relative to the Paramecium membrane. Gentle agitation would allow the
lysis of the endosymbiont without the lysis of a significant number of the endosymbionts. The
difficulty in this would be optimising the culture conditions for M. reisseri as these endosymbiont
algae are known to be relatively fastidious (Hoshina and Imamura, 2009).

If this further work does results in finding that P. bursaria and M. reisseri do form a mutually
obligate system then the case that metabolic co-dependence has become fixed in these strains can
be strongly argued. To test

As the Yad1g1N culture has previously been established as a facultative endosymbiosis fur-
ther work should use the Yad1g1N and CCAP1660/12 transcriptomes created here to attempt
to identify key differences between them. Identifying these differences may pinpoint the mech-

anism by which metabolic co-dependence becomes fixed in P. bursaria - green algal endosym-
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bioses.

The ITS2 sequence analysis of the CCAP 1660/12, and CCAP 1660/13 cultures revealed
that these cultures likely contained the same M. reisseri endosymbiont and not a Coccomyxa en-
dosymbiont as described in the culture collection. The identity of the Yad1g1N endosymbiont as
C. variabilis 1N was also confirmed. These results emphasised the necessity of phylogenetic analy-
ses to robustly identify the members of a system of study. This work analysing the endosymbionts
should ideally but supplemented by an analysis of the host taxonomy. This could be achieved in
the various Paramecium bursaria strains by a similar analysis targeting the single MIC copy of the
rDNA.

This ITS2 analysis also established that the photobionts in the CCAP 1660/12, CCAP 1660/13
and NBRP Yad1g1N cultures most likely form clonal photobiont cultures within their host and
that none of the cultures show evidence of multiple species of photobiont. This suggests that
clonal photobiont samples do potentially exist in nature as samples such as the CCAP 1660/12
and 1660/ 13 cultures were collected directly from the environment. As the Yad1g1N culture cre-
ation involved the isolation and purification of the 1N endosymbiont, clearing of the Yad1g host
and then their subsequent reintroduction the observed ITS2 sequence similarities suggests that
the photobiont undergo little divergence and remain largely homogeneous within the host.

Unfortunately, the utility of the single cell metagenome to further test endosymbiont clonal-
ity was limited due to the high level of bacterial contamination. New tools and methods need to
be developed to process and cluster MDA genomic contigs in the absence of reference genomes
due to the unreliability of coverage as a feature. The existence of this type of method optimised for
de novo assembled eukaryotic data would greatly aid the analysis of complex interacting eukary-
otic systems using MDA based genomics. One approach could be to utilise blanket normalisa-
tion methods and base the variational inference off the normalised coverage and compositional
teatures. However, by using a blanket coverage threshold instead of a relative one there is the
potential to discard a significant portion of sequencing data.

In combination the results from the first results chapter shed doubt on some of the arguments
supporting the utility of Paramecium in the study of endosymbiosis. Specifically, that it is not
necessarily facultative and metabolic dependence, if not necessarily co-dependence, has become

fixed in at least one species. Additionally, due to this observed diversity between the individual
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endosymbiotic relationships combined with the taxonomic turmoil and previous mislabelling
means that the utility of the reference literature is reduced. Any data from literature prior to the
establishment of molecular taxonomy in these species needs to be carefully revisited and verified
before it can be effectively used to contextualise any “omic” analyses.

In-depth analysis of the optimisation of pre-processing, filtering, assembly, and binning of sin-
gle cell transcriptomics revealed that it was possible to generate and assemble single cell RNAseq
datasets of complex eukaryotic systems. Previous work has shown the potential utility of de novo
SCT in eukaryotic micro-organisms (Kolisko et al., 2014). However, this work represents the
first analysis using SCT to investigate a non-axenic eukaryotic system. Particularly, this is also the
first analysis of a pair of interacting eukaryotic partners using single cell methods in the absence
of reference genomes. This analysis identified that GC% based pre-assembly read partitioning is
ineffectual for these datasets, but taxonomic screening is highly necessary to minimise the levels
of bacterial contamination. This data also emphasises the utility of phylogenetically informed
transcript binning processes instead of relying exclusively on naive top BLAST hit approaches.
This work also determined that current recommended practices in bulk RNAseq, such as digital
normalisation and error correction, are still highly useful techniques in the analysis and assembly
of SCT datasets. However, specific findings regarding optimal settings for these tools need to be
re-evaluated for sc-RNAseq data.

Future work could consider the utility of phylogenetically aware kernels e.g. (Vert, 2002) in
the classification of transcript bins. Pre-assembly read partitioning should also be revisited and
the benefit of incorporating additional sequence feature such as composition and coverage data
investigated in this form of pre-processing.

An analysis of the endosymbiont metabolism via expressed transporters and secreted pro-
teins revealed novel aspects of amino acid usage by M. reissieri as well as the potential synthesis
of complex saccharides such as raffinose and arabinose within the PV lumen. Metabolomic data
supporting these hypotheses were also presented. While the untargeted metabolomic profiling
does require further optimisation, particularly GC-QTOF analysis of carbohydrate metabolism,
these approaches showed themselves as highly useful in supplementing transcriptomic data. Fur-
ther targeted mass spectrometry is required to confirm the differential abundances of raffinose,

arabinose. Additionally, the targeted amino acid analysis requires revisited due to a failure to fit
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calibration curves to the peaks generated by the majority of the amino acids.

Comparison of the active metabolic network in M. reisseri during endosymbiosis to that of C.
variabilis 1N and the total metabolic capacity of C. variabilis NC64A and Coccomyxa subellipsoidea
also revealed unique traits. Specifically, M. reisseri does not express aspects of fatty acid degrada-
tion present in the other endosymbionts. Additionally, it has distinct amino acid degradation
pathways that are congruent with the identified alternative amino acid usage in this species.

The discovery of novel metabolic traits further supports the potential utility for single cell
transcriptomics and bulk metabolomic analysis for identifying the underlying molecular function
of a given endosymbiotic relationship. Unfortunately, it also further underlines the diversity and
variability displayed between different P. bursaria - green algal systems.

Finally, an analysis of RNAi in P. bursaria revealed a potentially inactive/absent dsRNA in-
duced RNAi system in P. bursaria SW1 (CCAP 1660/12). The common pattern of presence and
absence of the previously identified components of the RNAi pathways in both P. bursaria tran-
scriptomes suggests that this system is likely to be inactive or missing in P. bursaria. The most
significantly missing factor is that of the Pds1 gene that has been implicated in the uptake of RNA
from the digestive vacuole. As this has been discovered to occur at low and natural levels in P.
tetaurelia during normal feeding (Carradec et al,, 2015) the potentially deleterious presence of
eukaryotic algal endosymbionts may offer an explanation for the deactivation/absence of this
system.

An “in-silico” study of the number of potential siRNA “collisions” between the active Parame-
cium transcriptomes and other eukaryotic transcriptomes (particularly those belonging to the
endosymbionts) supported this hypothesis. Relatively more collisions occur between the host
and eukaryotic transcriptomes than do versus bacterial ones. The greater number of collisions in-
creases the chance of deleterious cross-talk taking place and thus likely increases the fitness cost
of maintaining this system in the presence of eukaryotic endosymbiont. Additional work needs
done to assess the exact nature of these collisions, particularly between host and endosymbiont.

The results in this thesis presented above (namely the discovery evidence of numerous spe-
cialised adaptations in each host-algal system and obligacy) raise an interesting question: why is
there a lack of evidence evidence of tighter integration in this system? Specifically, the type of

genomic integration displayed in other endosymbionts such as EGT.
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Firstly, the protein import systems considered necessary for extensive EGT to start taking
place are more complicated in the cases of secondary and tertiary endosymbioses than in basic
plastids due to the increased number of membranes that may need to be traversed. This is es-
pecially true for import directly to the secondary plastid from the host (Hirakawa et al., 2012).
Secondly, the unusual nuclear dimorphism of the host P. bursaria and alternative codon usage
may prove a barrier to the vast majority of EGT activity.

For successful transfer to take place between host and endosymbiont it would be necessary for
the gene to transfer not just from the endosymbiont to the transcriptionally active host MAC but
to the germline MIC. Even then integration into the MIC would have to occur in such a way that
it would be correctly spliced and duplicated during the conversion of the MIC back to the MAC.
Compounding this with sexual reproduction further decreases the probability of effective inte-
gration. It is notable that the prototypical hosts of the endosymbiotically “promiscuous” green
algae - Chlorella, Coccomyxa and Micractinium all display germline sequestration either through
the aforementioned dimorphism in P. bursaria or via standard metazoan germlines in the case of
Hydra (Kawaida et al,, 2013) and the kleptoplastic sacoglossan sea slugs (Yellowlees et al., 2008).

Future work could attempt to use the genomic contigs generated here and/or further sequenc-
ing to pin-point examples of endosymbiont genes being present in host contigs and vice versa.
Then, due to the rate of chimeric contigs in MDA, PCR and Sanger sequencing could be used to
confirm any putative EGTs.

Another interesting angle of investigation of these systems is analysing what host and en-
dosymbiont transcripts are not expressing during endosymbiosis. This was partially analysed by
(Kodama et al., 2014) however, the partial genome and transcriptome could be used to further
answer this question. Specifically, all genes present in the genome assembly could be identified
and annotated using standard annotation pipelines and then the transcriptomes surveyed for their
presence. Any gene present in the genome that is not observed in the transcriptomes of endosym-
biosis could shed further light on the function and evolution of these systems.

Ultimately, this work has identified the diverse, complex and distinct set of traits that different
P. bursaria-green algal endosymbioses display and demonstrated that, while still nascent, single
cell methodologies can be amenable to the analysis of complex multi-member eukaryotic sys-

tems that lack prior genomic references. Unfortunately, both due to the diversity of the systems
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discovered in the P. bursaria-algal endosymbioses and the inability to induce RNAI, the utility of
the Paramecium bursaria as a general model for the evolution of co-dependence is less than ini-
tially believed. However, future work in these systems using the “omic” resources generated in
this thesis as a base dataset could help us understand how such mechanistic endosymbiotic diver-
sity is possible even in closely related host and endosymbionts species. Understanding the answer
to this question would greatly improve our understanding of the evolution of endosymbiosis and

ultimately the eukaryotic cell.
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