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Introduction



Phylogenies are hypotheses

Cid

Tetrahymena thermophila [XP_001012854.1]

Tetrahymena thermophila [XP_001012858.1]

Paramecium bursaria SW1 [comp3906_seq0_m.68533]

Paramecium bursaria SW1 [comp3906_seq0_m.68531]

Paramecium bursaria Yad1g [TR17851_c0_g1_i8_m.235761]

Paramecium bursaria Yad1g [TR432_c1_g1_i2_m.4057]

80.7%/0.93

Paramecium biaurelia [PBIGNP33303]

Paramecium tetaurelia Cid3 [GSPATP00025353001]

Paramecium sexaurelia [PSEXPNG26288]

89.8%/0.94

Paramecium multimicronucleatum [PMMNP07604]

99.8%/1.00

Paramecium caudatum [PCAUDP10462]

91%/0.93

Paramecium tetaurelia Cid1 (Marker, 2014) [PTETP9100013001]

Paramecium biaurelia [PBIGNP26212]

Paramecium primaurelia [PPRIMP23072]

5%/0.51

Paramecium sexaurelia [PSEXPNG26738]

42%/0.71

Paramecium multimicronucleatum [PMMNP02964] 

98.9%/0.99

Paramecium caudatum [PCAUDP15935]

55.4%/0.63

99.7%/1.00

59.5%/0.67

100%/1.00

97.9%/1.00

Paramecium caudatum [PSEXPNG26858]

Paramecium multimicronucleatum [PMMNP03007]

Paramecium sexaurelia [PSEXPNG26858]

Paramecium primaurelia [PPRIMP27560]

Paramecium biaurelia [PBIGNP11073]

Paramecium tetaurelia Cid2 (Marker, 2014) [PTETP13400003001]
84.1%/0.91

83%/0.88

95.3%/0.96

83.9%/0.88

59.1%/0.54

99.7%/1.00

86.7%/0.69

100%/1.00

0.2

Cid2

Cid1

Cid3

Cid1-3
Ancestor?

2



Hypothesis testing

• Does another model of sequence evolution fit the data better?
• How well supported are individual branches in a tree?
• Does another tree explain the data better?
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Sources of Error

• Bad data

• Sampling error
• Misleading evolutionary events
• Misspecified models
• Inappropriate inference

4



Sources of Error

• Bad data
• Sampling error

• Misleading evolutionary events
• Misspecified models
• Inappropriate inference

4



Sources of Error

• Bad data
• Sampling error
• Misleading evolutionary events

• Misspecified models
• Inappropriate inference

4



Sources of Error

• Bad data
• Sampling error
• Misleading evolutionary events
• Misspecified models

• Inappropriate inference

4



Sources of Error

• Bad data
• Sampling error
• Misleading evolutionary events
• Misspecified models
• Inappropriate inference

4



Saturation

[Leonard, 2010]
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Misleading Signal: Recombination
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Misleading Signal: Hidden Paralogy/Incomplete Sampling

[Leonard, 2010]
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Misleading Signal: Horizontal Gene Transfer

[Leonard, 2010]
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Misleading Signal: Horizontal Gene Transfer

[Richards et al., 2009]
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Tree not always correct paradigm

Ask for a tree get a tree.
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Tree not always correct paradigm

Ask for a tree get a tree.

Reanalysis of [Marwick, 2012] from
http://phylonetworks.blogspot.ca/2013/02/
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Evolutionary Model Testing



Sequence Evolution Models

http:
//carrot.mcb.uconn.edu/~olgazh/bioinf2010/class24.html 12

http://carrot.mcb.uconn.edu/~olgazh/bioinf2010/class24.html
http://carrot.mcb.uconn.edu/~olgazh/bioinf2010/class24.html


Sequence Evolution Models

[Nickle et al., 2007]
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What happens if the wrong model is specified?

• Increased Inaccuracy (wrong tree more often)

• Inconsistency (adding more data converges to wrong tree)
• Wrong branch lengths (important for certain analyses)
• Wrong tree support values
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How do we select a model?

• L(τ, θ) = P(X|τ, θ)

• With ML inference we are finding the maximum-likelihood
estimate of τ and θ

• i.e. τ̂ , θ̂ = argmaxτ,θ L(τ, θ)
• Therefore, to compare two models we can use a likelihood ratio
test (LRT δ)

• δ = 2(ln(L1)− ln(L0))
• Limitations: nested models (i.e. hLRT), order matters, no
regularisation
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Information Criterion

• Akaike Information Criterion (AIC), penalising number of
parameters:

• AIC = −2ln(L) + 2K
• However, this penalises all high K models even if sample size is
large too.

• Corrected Akaike Information Criterion (AICc)
• AICc = AIC+ 2K(K+1)

n−K−1

• Alternatively, there is the Bayesian Information Criterion (BIC):
• BIC = −2ln(L) + Kln(n)
• Decision Theory (DT) risk minimisation approach.
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Limitations

• What if everything fits poorly?

• Information criterion test relative goodness of fit instead of
absolute

• Parametric Bootstrapping/Posterior Predictive Simulation
• If the model is reasonable then data simulated under should
resemble the empirical data
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Branch Support Testing



Bootstrapping in General

The bootstrap

(unknown) true value of  

(unknown) true distribution empirical distribution of sample

estimate of  

Distribution of estimates
 of parameters

Bootstrap replicates

Slide from Joe Felsenstein 18



Bootstrapping Phylogenies

The bootstrap for phylogenies

Original
Data

sites

Bootstrap
sample
#1

Bootstrap
sample

#2

sample same number
of sites, with replacement

sample same number
of sites, with replacement

(and so on)

T
^

T(1)

T(2)

Slide from Joe Felsenstein
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Bootstrapping Phylogenies

20



Bootstrapping Phylogenies

The majority-rule consensus tr ee

C
A

Trees:

How many times each partition of species is found:

AE | BCDF 4
ACE | BDF 3
ACEF | BD 1
AC | BDEF 1
AEF | BCD 1
ADEF | BC 2
ABCE | DF 3

B
D
F

E
C
A

B
D
F

E

C
A

B
D
F

E

C
A

B

D
F

E

C

A

B

DF

E
A C

B
D
F

E
0.6

0.6
0.8

Slide from Joe Felsenstein 21



Combining the results

22



What is the bootstrap doing?

• Randomly reweighing the sites in an alignments

• Probability of a site being excluded 1− 1
nn

• Asymptotically approximately 0.36
• Goal to simulate an infinite population (number of alignment
columns)
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Limitations

• Typically underestimates the true probabilities

• i.e biased but conservative
• Computationally demanding
• Assumes independence of sites
• Relies on good input data
• Only answers to what extent does input data support a given
part of the tree
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Parametric Bootstraps

• Simulate data sets of this size assuming the estimate of the tree
is the truth

• Key for many more sophisticated tests.
• Can be used to generate p-values, but non-trivial

25



Alternative Approaches

• Resampling estimated log-likelihoods (RELL)

• Instead of re-doing the full ML inference just re-sample the site
ln(L) values and sum

• Rapid Bootstraps (RBS)
• Ultrafast Bootstraps (UFBoot)
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Likelihood Tests

• Comparing the 3 nearest NNIs
to a given branch:

• Parametric aLRT: χ2 of δ for
branch vs. closest NNIs

• Non-parametric SH-aLRT
based on RELL

• aBayes:
• P(Tc | X) = P(X|Tc)P(Tc)∑2

i=0P(X||Ti)P(Ti)
with

flat prior
P(T0) = P(T1) = P(T2)

27
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Comparing Trees



How to compare competing hypotheses?

https://github.com/mtholder/TreeTopoTestingTalks

28
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How to compare competing hypotheses?

https://github.com/mtholder/TreeTopoTestingTalks
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Simplistic Comparison

30



Qualitative Comparison

• 4 sites favour the red tree, 2 favour the blue

•
(n
k
)
pk(1− p)n−k

• 4 out of 6 p = 0.6875
• 40 out of 60 p = 0.0124
• 400 out of 600 p = 2.3 ∗ 10−16
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Quantiative Comparison

• µ = (−5.2+ 3.1+ 0.9+ 6.6+ 0.3− 0.2)/6 = 0.916

• σ2 = 15.22
• t = µ

σ2 ∗
√
N = 0.148

• therefore: p = 0.888 under 5d.f.
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More robust approaches

• Null: if no sampling error (infinite data) T1 and T2 would explain
the data equally well.

• δ(T1, T2 | X) = 2 [ln L(T1 | X)− ln L(T2 | X)]
• Expectation under null E [δ(T1, T2 | X)] = 0
• Why can’t we just use χ2 to get a critical value for δ?
• Tree space is difficult.
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Estimating variance of the null

• Many avenues:
• Non-parametric bootstrapping
• Parametric bootstrapping
• Related approaches.
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Kishino-Hasegawa Test

• First, winning sites test

• H0 : [ln L(T1 | X)− ln L(T2 | X)] = E [δ(T1, T2)] = 0
• Ha : E [δ(T1, T2)] ̸= 0
• Non-parametric Bootstrap to estimate Null variance
• Test E [δ(T1, T2)] two-tail t-test
• Due to centring assumption can’t be used for optimal tree i.e.
selection bias

• Can’t handle multiple comparisons.
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Alternative tests

• Shimodaira-Hasegawa Test

• Compares candidate tree sets
• H0 = all topologies equally good
• Very conservative when the number of candidate trees is large
• Can be corrected with weighted SH-test overcomes.
• Approximately Unbiased Test
• Achieves weighted by varying bootstrap size for each tree.
• Better for larger comparisons, can have issues with P-space
curvature.

• Swofford–Olsen–Waddell–Hillis same idea but uses parametric
bootstraps instead.

• Sensitive to model misspecification.
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Conclusion



Summary

• Tree space makes for some interesting problems that takes
away some standard statistical tricks.

• Model selection typically relies on multiple metrics
• Bootstrapping is a slow, biased but conservative way to estimate
the support for a given branch in your tree.

• Likelihood Testing is powerful but must be used with care.
• Comparing trees directly is non-trivial due to tree-space.
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