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Introduction



Phylogenies are hypotheses

Cid

Paramecium tetaurelia Cid2 (Marker, 2014) [PTETP13400003001]

Paramecium biaurelia [PBIGNP11073]
o 1L paramecium primaurelia [PPRIMP27560]
Paramecium sexaurelia [PSEXPNG26856]

Paramecium multimicronucleatum [PMMNP03007]

‘Paramecium caudatum [PSEXPNG26858)

Paramecium caudatum [PCAUDP15935]

Paramecium sexaurelia [PSEXPNG26738]
T ~Paramecium primaurelia [PPRIMP23072]
Paramecium biaurelia [PBIGNP26212]

Paramecium tetaurelia Cid1 (Marker, 2014) [PTETP9100013001]

-Paramecium caudatum [PCAUDP10462]

Paramecium sexaurelia [PSEXPNG26288)

tetaurelia Cid3 [ ]

-Paramecium biaurelia [PBIGNP33303]
Paramecium bursaria Yad1g [TR432_c1_g1_i2_m.4057]

Paramecium bursaria Yad1g [TR17¢

_c0_g1_iB_m 235761]

Paramecium bursaria SW1 [comp3906_seq0_m.68531]

-Paramecium bursaria SW1 [comp3906_seq0_m.63533]
Tetrahymena thermophila [XP_001012856.1]

Tetrahymena thermophila [XP_001012854.1]

cig2

cidl

cid3

Cid1-3
Ancestor?



Hypothesis testing

- Does another model of sequence evolution fit the data better?
- How well supported are individual branches in a tree?

- Does another tree explain the data better?
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Sources of Error

- Bad data

- Sampling error

- Misleading evolutionary events
- Misspecified models

- Inappropriate inference



Number of Mutations

Time

[Leonard, 2010]



Misleading Signal: Recombination
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Full sampling of gene family -
both paralogues tracing species
phylogeny (C,(8,A))
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Misleading Signal: Hidden Paralogy/Incomplete Sampling

Incomplete sampling of gene

family - using a mixture of different
paralogues. Gene phylogeny is
inconsistent with species relationships
suggesting possible HGT (B,(C,A))
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[Leonard, 2010]



Misleading Signal: Horizontal Gene Transfer
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Misleading Signal: Horizontal Gene Transfer

Arabidopsis thaliana
Populus trichocarpa
Oryza sativa
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Tree not always correct paradigm

Ask for a tree get a tree.
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Tree not always correct paradigm

Ask for a tree get a tree.
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Reanalysis of [Marwick, 2012] from
http://phylonetworks.blogspot.ca/2013/02/

i


http://phylonetworks.blogspot.ca/2013/02/

Evolutionary Model Testing



Sequence Evolution Models
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Sequence Evolution Models
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What happens if the wrong model is specified?

- Increased Inaccuracy (wrong tree more often)
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What happens if the wrong model is specified?

- Increased Inaccuracy (wrong tree more often)
- Inconsistency (adding more data converges to wrong tree)
- Wrong branch lengths (important for certain analyses)

- Wrong tree support values

14
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How do we select a model?

- L(7,0) = P(X|T,0)

- With ML inference we are finding the maximum-Llikelihood
estimate of 7 and 6

- ie 7,0 =argmax., L(r,0)

- Therefore, to compare two models we can use a likelihood ratio
test (LRT 9)

- 6 =2(In(Ly) — In(Lo))

- Limitations: nested models (i.e. hLRT), order matters, no
regularisation
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parameters:
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Information Criterion

- Akaike Information Criterion (AIC), penalising number of
parameters:

- AIC = —2In(L) + 2K

- However, this penalises all high K models even if sample size is
large too.

- Corrected Akaike Information Criterion (AICc)

- AlCc = AIC + 231

- Alternatively, there is the Bayesian Information Criterion (BIC):
- BIC = =2[n(L) + Kln(n)

- Decision Theory (DT) risk minimisation approach.

16
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- What if everything fits poorly?

- Information criterion test relative goodness of fit instead of
absolute

- Parametric Bootstrapping/Posterior Predictive Simulation

- If the model is reasonable then data simulated under should
resemble the empirical data



Branch Support Testing




Bootstrapping in General

The bootstrap

(unknown) true value of
estimate of 0

Aa i

(unknown) true distribution empirical distribution of sample

—
Bootstrap replicates

Distribution of estimates
of parameters

Slide from Joe Felsenstein



Bootstrapping Phylogenies

The bootstrap for phylogenies

sites

sample same number
of sites, with replacement

Original
Data
//;;/
/ /
| 1
Bootstrap | 1
sample | |
#1 !
\ \
\\
N
SN
~N
Bootstrap
sample
#2

sample same number
of sites, with replacement

Slide from Joe Felsenstein

(and so on)
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Bootstrapping Phylogenies

Bootstrapped Trees

alignments

Alignment Resample the alignment

515621 m) >—<
123456 =

CatCOa e 364122 # <
ccgggt

gcggga — e—— 615343 m) >
gaacgt ——
414436 m) >—<

‘ Inferred tree

o Qw
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Bootstrapping Phylogenies

The majority-rule consensus tree
E B E B
c F A F
E B c B E B
A>—<c E- Y 0 A>—<D
F D A F c F

How many times each partition of species is found:

Trees:

AEIBCDF 4
ACEIBDF 3 E B
ACEFIBD 1 0.8

ACIBDEF 1

AEFIBCD 1 A 0.6 06 -D
ADEFIBC 2 . F
ABCEIDF 3 C

Slide from Joe Felsenstein 21



Combining the results
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What is the bootstrap doing?
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What is the bootstrap doing?

- Randomly reweighing the sites in an alignments
* Probability of a site being excluded 1— 1n
- Asymptotically approximately 0.36

- Goal to simulate an infinite population (number of alignment
columns)
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- Typically underestimates the true probabilities
- i.e biased but conservative

- Computationally demanding

- Assumes independence of sites

- Relies on good input data

- Only answers to what extent does input data support a given
part of the tree

24



Parametric Bootstraps

- Simulate data sets of this size assuming the estimate of the tree
is the truth

- Key for many more sophisticated tests.
- Can be used to generate p-values, but non-trivial

25



Alternative Approaches

- Resampling estimated log-likelihoods (RELL)
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Alternative Approaches

- Resampling estimated log-likelihoods (RELL)

- Instead of re-doing the full ML inference just re-sample the site
[n(L) values and sum

- Rapid Bootstraps (RBS)
- Ultrafast Bootstraps (UFBoot)
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Likelihood Tests

Worst,

- Comparing the 3 nearest NNIs
to a given branch:

- Parametric aLRT: x? of § for
branch vs. closest NNIs

- Non-parametric SH-aLRT

based on RELL

- aBayes:
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Likelihood Tests

Worst,

- Comparing the 3 nearest NNIs
to a given branch:

- Parametric aLRT: x? of § for
branch vs. closest NNIs

- Non-parametric SH-aLRT

based on RELL

- aBayes:

P(XITc)P(Tc)
PUTe | X) = ssramymmy Wit
flat prior

P(To) = P(T1) = P(T>)
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Comparing Trees




How to compare competing hypotheses?

gorilla



https://github.com/mtholder/TreeTopoTestingTalks 
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Qualitative Comparison
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Qualitative Comparison
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By how much?| 5.2 | 3.1 [| 0.9 || 6.6 [|0.3 0.2

- 4 sites favour the red tree, 2 favour the blue
. (Z)pl?(—l —p)nk

- 4outof 6 p=0.6875

- 40 out of 60 p = 0.0124

- 400 out of 600 p = 2.3 %1071
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Quantiative Comparison
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Quantiative Comparison

i A c
1112 3|[4]|5]|6 > <
A cllallt]fc|lc]lt B D
B cllcllgllgllgllt
c |gllc|lg|lgllal|a A 8
D gllallallc|lgllt >_<
D 9
Favours? I:l D I:‘ l:‘ I:l I:I
By how much?| 5.2 | 3.1 [| 0.9 || 6.6 [|0.3 0.2

*p=(-52+31409+466+03-0.2)/6=0.916
-~ 02 =15.22
= L 5N = 0.148

- therefore: p = 0.888 under 5d.f.

32



More robust approaches

- Null: if no sampling error (infinite data) T; and T, would explain
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More robust approaches

- Null: if no sampling error (infinite data) T; and T, would explain
the data equally well.

. (S(Tq, T, | X) =2 [ln L(Tj | X) —In L(Tz | X)]
- Expectation under null E[6(T;, T, | X)] =0
- Why can’t we just use x? to get a critical value for §?

- Tree space is difficult.
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Estimating variance of the null

- Many avenues:

- Non-parametric bootstrapping
- Parametric bootstrapping

- Related approaches.
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Kishino-Hasegawa Test

- First, winning sites test
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- First, winning sites test

* Ho: [InL(Ty [ X) = InL(T> [ X)] =E[6(T7, T2)] = 0

* Ho - E[6(T7, T2)] # 0

- Non-parametric Bootstrap to estimate Null variance
- Test E[6(T4, T)] two-tail t-test

- Due to centring assumption can't be used for optimal tree i.e.
selection bias

- Can't handle multiple comparisons.
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- Shimodaira-Hasegawa Test

- Compares candidate tree sets

- Ho = all topologies equally good

- Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.

- Approximately Unbiased Test

- Achieves weighted by varying bootstrap size for each tree.

- Better for larger comparisons, can have issues with P-space
curvature.

- Swofford-Olsen-Waddell-Hillis same idea but uses parametric
bootstraps instead.

- Sensitive to model misspecification.
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- Tree space makes for some interesting problems that takes
away some standard statistical tricks.

- Model selection typically relies on multiple metrics

- Bootstrapping is a slow, biased but conservative way to estimate
the support for a given branch in your tree.

- Likelihood Testing is powerful but must be used with care.

- Comparing trees directly is non-trivial due to tree-space.
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