Investigating the mechanisms implicated in the maintenance of photosynthetic endosymbiosis between *Paramecium bursaria* and *Chlorella*

Finlay Maguire

University College London, Natural History Museum & University of Exeter

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Background Biology

- Putatively facultative photosynthetic endosymbiosis between Paramecium bursaria, a ciliate, and Chlorella, a green algae
- One of the earliest studied micro-organisms (figure illustrated by Otto Muller in 1773)
- Complex, multi-factor relationship (on top of pure energetics: predation, photoprotection, thermotolerance, exploitation of low oxygen environments etc.)
- Theoretically forms and interesting and tractable system to study endosymbiosis before metabolic co-dependence becomes fixed

Transcriptomics on the system

- Day and night bulk RNA-Seq
- De-novo total assembly (pooled reads followed by remapping)
- Multiple assemblers and parameters used
- Referenced assemblies (*Coccomyxa*) but applicability of references requires fine-scale endosymbiont and host identification

Assembly Metric	Oases Assembly	Trinity Assembly
Min Contig Length:	100	201
Max Contig Length:	16,202	17,729
Mean Contig Length:	648.90	959.32
Standard Deviation of Contig Length:	939.04	1080
N50 Contig Length:	1,368	1,621
Number of Contigs:	117,570	48,003
Number of Contigs ≥ 1 kb:	22,225	14,774
Number of Contigs in N50:	14,977	8,060
Number of Bases in All Contigs:	76,290,606	46,050,097
Number of Bases in All Contigs ≥ 1 kb:	46,695,005	31,602,626
GC Content of Contigs:	28.99%	30.97%

Confirming the identity of the host/endosymbiont

- rRNA fragments from within the transcriptome
- ITS2 sequencing
- ML and Bayesian phylogenetics
- Concluding: Referenced host assembly not applicable (not shown) but host (*Paramecium bursaria*) relatively distance, including 2 whole genome duplications from closest genome (*Paramecium tetraurelia*)

Identifying transcript origin: problem formulation

- Metatranscriptome problem most solutions geared towards environmental studies
- Diverse transcript origins (e.g. bacterial food sequences, other potential contaminants, as well as host and endosymbiont)
- Existing small-scale methods use relatively crude measures e.g. CDS calling, GC%, BLAST
- We tested how well these type of measures perform compared to manually evaluated phylogenies

★ ■ ★ ■ ★ ■ ★ ■ ♥ ♥ ♥ ♥

Automated high-throughput transcript identification tool

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Parallelised automated phylogeny generation and parsing

- Running using coarse parallelism (each transcript being processed using an individual node not requiring shared memory) - 'supermarket queue'
- > Approximately 35% faster than serial multi-threaded execution of each step
- For each transcript:
 - BLAST against curated database of 900 genomes
 - Align recovered sequences using MUSCLE
 - Automatically mask using TrimAL
 - Generate rapid maximum-likelihood phylogenies using FastTree2
- Once each phylogeny has been generated they can be parsed
- If categories have been decided vectors can be generated:
 - Parse each phylogeny using ETE2 and recover N-nearest neighbours to transcript in phylogeny
 - Using the NCBI taxonomy API determine taxonomy and categorisation of these neighbours
 - Sum the reciprocal total distance for each category within the N-neighbours
 - ▶ i.e. For the *i*-th phylogeny the *j*-th parameter in its feature vector will be $\frac{1}{\sum_{p=1}^{n} X_p}$ where X_p corresponds to the tree distance between the transcript and the *p*-th neighbour (for the $n \subseteq N$ neighbours s.t. $n \in$ to the appropriate category).

Support Vector Machines

- Linear classification:
 - Maximum margin solution + regularisation

- Non-linear classification:
 - Kernel functions (map to feature space)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Multi-class classification (e.g. 'Endosymbiont', 'Host', 'Food', 'Unknown'):
 - One-vs-all
 - In-built

Assessing SVM function

- \blacktriangleright Optimise C and θ
- Error analysis
- Learning curves (Variance vs Bias)
- Precision (proportion of returned results that are relevant) / Recall (proportion of relevant results returned) (F₁ Score)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Anomaly detection

- Generate multivariate Gaussians for each category (using labelled data)
- \blacktriangleright Assign a threshold ϵ
- If $P(X) \le \epsilon$ for each Gaussian then flag input at potentially anomalous
- Manually investigate the anomalies
- Tweak ϵ to maximise TP while secondarily minimising FP

996

э

Beginning metabolic reconstruction

- Use the transcripts as partitioned into host and endosymbiont origin to map onto KEGG metabolic networks
- GO and KO annotation of transcripts
- Combine KEGG modelling with differential expression data and known literature to identify putative candidates involved in the maintenance of the endosymbiosis

900

Evidence supporting theoretical model

- Figure adapted from [Kato & Imamura, 2009]
- Putatively differentially expressed
 - 6 endosymbiont sugar transporters putatively differentially up-regulated
 - 4 host cation transporters (K^+, Ca^{2+}, Mg^{2+})
 - > 2 endosymbiont cation transporters (Ca^{2+} , K^+)

Summary

- Creation of an effective tool in resolving a key problem in multi-member transcriptome analyses
- Mapping and evaluating a complex data source in exploratory analysis
- Make predictions of key candidates for further investigation (still improving)
- Molecular validation of models and candidate proteins (in progress):
 - Validate these predictions as having a role via RNAi
 - System tested using Bug22 marker with mixed success
 - Confirm differential expression (single cell transcriptomes/qPCR)