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Overview



Comprehensive Antibiotic Resistance Database

• https://card.mcmaster.ca/ (Jia et al., 2016) as of June 2018:

• Built around Antibiotic Resistance Ontology (ARO): 3996 terms

• 2536 AMR Detection Models with manually curated criteria:

• Homology e.g. NDM beta-lactamases, aminoglycoside

acetyltransferase

• Protein Variant e.g. GyrA fluoroquinolone mutation, FolP

sulfonamide mutation

• rRNA gene variants e.g. Mycobacterium aminoglycoside resistance

• Efflux pump e.g. AcrAB-TolC, MexAB-OprM mutations

• Gene cluster e.g. Van glycopeptide resistance clusters

• Resistance Gene Identifier (RGI): contigs, predicted genes and

merged metagenomic reads

• CARDPredicted prevalence dataset
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Metagenomic Analysis

modified from https://www.gatc-biotech.com/en/expertise/genomics/metagenome-analysis.html

Key difficulties:

• Variation in abundance and diversity

• Short fragmentary data

• Large amounts of data

• Compositionality

• Spare and imbalanced labels
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AMRtime Structure

Metagenomic ReadsInput files

Processes

Intermediate files

Output files

AMR Filtering

Filtered reads

Sensitive Homology Search

CARD

Homology predictions

Variant Identification

Variant predictions

Metamodels

Metamodel predictions
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Training Data



Dataset Generator

Assembled Genomes (*.fna)

Resistance Gene Identifier (RGI)

CARD AMR Annotations (*.gff)

Abundance/Diversity Resampling

’Assembled’ metagenome (.fna)

Illumina Simulator (ART)

Synthetic metagenome (.fq)Labelling

Read labels (.txt)
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Determinants are scarce
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Determinants are imbalanced

7



AMR sequence space is biased
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Read filtering



Homology Filter Approaches

• BLASTX (Gish et al., 1993)

• DIAMOND (Buchfink et al., 2015)

• PALADIN (Westbrook et al., 2017)

• MMSeqs2 (Steinegger and Söding, 2017)
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Performance at defaults?
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How computationally efficient are they?
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What about in terms of memory?
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Is there a cap on overall performance?
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What about to hit any ARO?
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Performance for best setting per tool
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But what about individual ARO performance?
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Systematically missing AROs
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Why are these 10 always missed?

• Enterococcus faecalis liaS mutant conferring daptomycin resistance

(AE016830.1):

• Protein 2790824-2789724

• DNA 1-732

• OXA-2 (M95287.4):

• Protein 2456-3280

• DNA 1-828

• Acinetobacter OprD conferring resistance to imipenem

(CP006768.1):

• Protein 3513470-3514777

• DNA 3514887-3515414
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CARD Full Length Alignment QC

• 11 AROs protein not detected from DNA

• 2 AROs different top protein hit from DNA

• Warnings: 119 AROs with different top protein but ID% > 99

• Warnings: 2 AROs with ID% < 99 to correct protein
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Sensitive Homology Search



First attempt at sensitive classification

Filtered Reads

Read encoding

Encoded reads

Torch Classifier

ARO predictions
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Revised classifier structure

Filtering Scores

Filtered Reads

Read encoding

Encoded readsAMR Family Classifier

AMR Families

Family 1 Classifier Family ... Classifier Family N Classifier

ARO predictions
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Encodings

• Raw sequence

• Filtering homology search family similarity/dissimilarity

• Manual feature extraction (GC/TNF/compositional)

• One-hot K-mer representation

• K-mer embeddings (DNA2vec/BioVec)
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Variant Models



Ribosomal Variant Models

Metagenomic reads

Ribosomal fragment identification

5S/16S/23S binned reads

Taxonomic classification

Taxa binnned reads

Alignment

SNPs
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Identifying Ribosomal Reads

• MetaRNA (Huang et al., 2009)

• Ribopicker (Schmieder et al., 2011)

• SortmeRNA (Kopylova et al., 2012)

• 77 models

• Reads simulated from the underlying 30 species reference genomes
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Identifying Ribosomal Reads
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Identifying Ribosomal Reads
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Identifying Ribosomal Reads
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Identifying Taxonomy

28



Some are relatively easy
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Others are a mess

30



Some are group ambiguous

Probably a Mycobacterium? 31



Others are just a toss-up

32



Ambiguity in classification
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Next Steps

• Mapping reads to reference to assess presence or absence of

mutation related SNP

• Comparison of whole pipeline with just direct mapping to database

of ribosomal sequences and SNP calling approaches.

• Tuning of sensitivity for number of potential SNPs required to make

a prediction of AMR.
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Summary



Conclusions

• AMRtime still not a ‘fait accompli‘

• Filtering analysis possibly needs redone for fixed CARD

• False positive analysis pending for best settings

• Framework and code developed for sensitive homology classification

but optimisation and evaluation work still required

• Not shown but preliminary family level classification shows 100x

improvements over previous ARO attempts

• Ribosomal Variant Model work progressing well with full pipeline

metrics available soon.
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Kopylova, E., Noé, L., and Touzet, H. (2012). Sortmerna: fast and

accurate filtering of ribosomal rnas in metatranscriptomic data.

Bioinformatics, 28(24):3211–3217.

Schmieder, R., Lim, Y. W., and Edwards, R. (2011). Identification and

removal of ribosomal rna sequences from metatranscriptomes.

Bioinformatics, 28(3):433–435.
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