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Genomic Phenotype Prediction



Antibiotic Susceptibility Testing

Bradley et al. (2015)
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Genomic RGI Predictions
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Linking AMR determinants to Phenotype

McArthur et al. (2013)
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Logistic Regression

RGI =


amr1 amr2 ... amrJ

genome1 1 0 ... 1

genome2 0 1 ... 1

... ... ... ... ...

genomeI 0 0 ... 1



AST =


abx1 abx2 ... abxK

genome1 S S ... R

genome2 R R ... S

... ... ... ... ...

genomeI S S ... S


βRGI = AST
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Set-Covering Machines

Genomes AST

Decompose into K-mers

Genomic K-mers

Set-Covering Machine

Boolean K-mer Rules
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AST Prediction Performance

A B

C D

A: RGI, B: RGI-efflux, C: Logistic Regression, D: Set Covering Machines.

Major Disagreement is overprediction of resistance, Very Major Disagreement is

underprediction 8



Learnt features/weights

A B
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Extending beyond Salmonella

ARO Predictions (Kara Tsang)
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Extending beyond Salmonella

Logistic Regression
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Genomic AST Prediction

• Using direct annotations works very poorly across different

organisms and resistance mechanisms.

• Even very simple logistic regression models greatly improve

predictions.

• Investigation of learnt weights and features can be very scientifically

informative.
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Non-Bioinformatics Interlude



• Non-profits have data and lots of contextualising knowledge.

• No time or resources to analyse or use it

• Informaticians have the skills and resources but no specific

understanding of the context.

• Many low-hanging fruit that can make big differences.
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Refugee Women’s Health Clinic
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Staff Scheduling
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Language Development in Autism

Qualitative Social Media Analysis (Tamara Sorenson-Duncan)
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Alpha Diversity of Posting Activity
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Beta Diversity of Posting Activity
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Other on-going Projects

• Halifax Community Learning Network

• Shelter Nova Scotia

• 211 Nova Scotia
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AMRtime



AMR-metagenomics

Genomes

Reads

AMR Genes

Sequencing

AMR detection
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Why is this difficult?



AMR genes are rare genomically

All (~324M) AMR (~2.1M)

107

108
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g(
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)

AMR Reads in Metagenome (0.643%)

2184 CARD-Prevalence Genomes at 1-10X abundance
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AMR genes have wildly different abundances

1236 AMR PATRIC genomes 22



AMR genes have highly variable diversity
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AMR sequence space overlaps
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Insufficient Signal in 250bp Fragments

NDM Multiple Sequence Alignment
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Insufficient Signal in 250bp Fragments

NDM Multiple Sequence Alignment
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Other constraints

• No point doing what we do if people can’t use it.

• Limited hardware requirements (a standard workstation or instance

< 8 − 12Gb, 1 − 8 cores).

• Fast enough (< 12 hours).

• Easy to install/configure.

• Easy to use.

• Easy to update.
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AMRtime



AMRtime structure

Metagenomic ReadsInput files

Processes

Intermediate files

Output files

AMR Filtering

Filtered reads

Sensitive Homology Classification

CARD

Homology predictions

Variant Identification

Variant predictions

Metamodels

Metamodel predictions
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Read filtering



Homology Filter Approaches
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Precision-Recall of Homology Search
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Optimising for recall
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Sensitive Homology Classification



Dealing with imbalanced training data

Simulated AMR Reads (.fq) Encoding Encoded Reads

Stratified Test-Train (20%) SplitLabels (.tsv)

Training Data Testing Data

SMOTE

Resampled Training Data

Stratified 5-fold CV

Training Data Folds
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What is balance?

• Different gene lengths within families (coverage vs read number)?

• Different family sizes?

• Different family diversity?

• Using a generator to improve on SMOTE.
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Initial classifier

Training Data

Classifier

ARO predictions

NB 7-mer Average Precision: 0.63 %
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Initial classifier

Training Data

Classifier

ARO predictions

NB 7-mer Average Precision: 0.63

%
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Initial classifier

Training Data

Classifier

ARO predictions

NB 7-mer Average Precision: 0.63 %
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Revised classifier structure: exploiting the ARO

Training Data

AMR Family Classifier

AMR Families

Family 1 SMOTE

Family 1 Data

Family 1 Classifier

Family ... SMOTE

Family ... Data

Family ... Classifier

Family N SMOTE

Family N Data

Family N Classifier

ARO predictions
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Sequence similarity encoding

Sequence bitscore matrix =



gene1 gene2 ... genej−1 genej

read1 1256 0 ... 0 63

read2 0 0 ... 0 0

... ... ... ... ... ...

readi−1 0 512 ... 0 0

readi 0 0 ... 785 129


Advantages: read length invariant, low dimensionality, uses filtering data

computation
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Cross-Validation

• Encodings:

• Raw sequence

• Filtering homology search family similarity/dissimilarity

• Manual feature extraction (GC/TNF/compositional)

• One-hot K-mer representation

• K-mer embeddings (DNA2vec/BioVec)

• Classifiers:

• Random Forests

• Naive Bayes

• Logistic Regression

• Neural Networks of varying architecture (Torch)
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Cross-validation
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Held-out test results
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ARO level classification more variable
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Family diversity as explanation?
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Within family label imbalance
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On-going Problems

• Multiset prediction when insufficient signal.

• Systematic benchmarking.

• Full end-to-end comparisons with other approaches (soliciting ideas!)

• rRNA and variant models (not discussed here).

• Integration into CARD platform and IRIDA.
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Backup
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Variant Models



Ribosomal Variant Models

Metagenomic reads

Ribosomal fragment identification

5S//16S/23S binned reads

Taxonomic classification

Taxa binnned reads

Alignment

SNPs
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Identifying Ribosomal Reads

• MetaRNA (Huang et al., 2009)

• Ribopicker (Schmieder et al., 2011)

• SortmeRNA (Kopylova et al., 2012)

• 77 models

• Reads simulated from the underlying 30 species reference genomes
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Identifying Ribosomal Reads
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Identifying Ribosomal Reads
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Identifying Ribosomal Reads
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Identifying Taxonomy
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Some are relatively easy
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Others are a mess

54



Some are group ambiguous

Probably a Mycobacterium? 55



Others are just a toss-up
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Ambiguity in classification
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Meta-models



Meta-models

• Efflux Pump

• Gene Cluster

Predicted components

Phylogenetic Placement

Phylogenetic groups Sequence feature extraction

Sequence featuresGrouping classifier

Multicomponent AMR hits

CARDPredicted Phylogenies
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