Phylogenetic Support

Statistical Testing of Trees

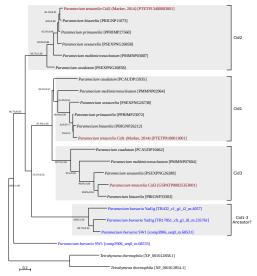
Finlay Maguire April 1, 2020

FCS, Dalhousie

Introduction

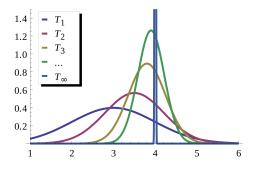
Phylogenies are hypotheses

Cid



Hypotheses can be wrong

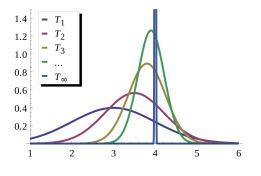
Assessing phylogenetic accuracy



bit.ly/3dHBiPT

Consistency

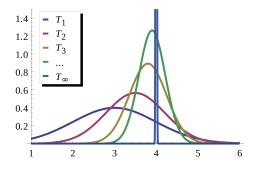
Assessing phylogenetic accuracy



bit.ly/3dHBiPT

- Consistency
- Efficiency

Assessing phylogenetic accuracy



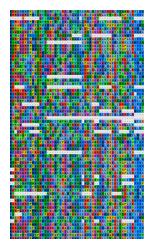
bit.ly/3dHBiPT

- Consistency
- Efficiency
- Robustness

Sources of Error: Bad Data

Throw unrelated sequences at an aligner

Sources of Error: Bad Data



Throw alignment at a trimmer

Sources of Error: Sampling



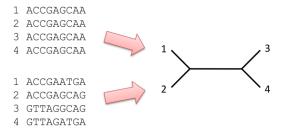
[Barton, 2007]

rtREV: An Amino Acid Substitution Matrix for Inference of Retrovirus and Reverse Transcriptase Phylogeny

Matthew W. Dimmic,¹ Joshua S. Rest,² David P. Mindell,² Richard A. Goldstein^{1,3,*}

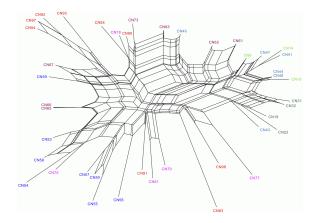
[Dimmic et al., 2002]

Ask for a tree get a tree.



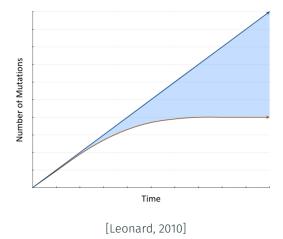
Tree not always correct paradigm

Ask for a tree get a tree.



Reanalysis of [Marwick, 2012] from http://phylonetworks.blogspot.ca/2013/02/

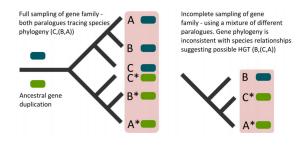
Misleading Evolutionary Signals: Saturation



9

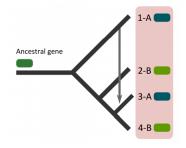
Misleading Evolutionary Signals: Recombination

Misleading Evolutionary Signals: Hidden Paralogy/Incomplete Sampling



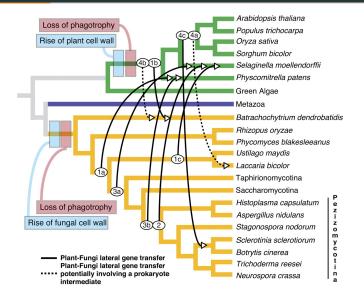
[Leonard, 2010]

Misleading Evolutionary Signals: Horizontal Gene Transfer



[Leonard, 2010]

Misleading Evolutionary Signals: Horizontal Gene Transfer



[Richards et al., 2009]

- 1. Sequence Evolution Model Selection
- 2. Testing Branch Support
- 3. Comparing Trees

Sequence Evolution Model Selection

Lots of Nucleotide Evolution Models

Model	df	Explanation
JC or JC69	0	Equal substitution rates and equal base frequencies (Jukes and Cantor, 1969).
F81	3	Equal rates but unequal base freq. (Felsenstein, 1981).
K80 or K2P	1	Unequal transition/transversion rates and equal base freq. (Kimura, 1980).
HKY or HKY85	4	Unequal transition/transversion rates and unequal base freq. (Hasegawa, Kishino and Yano, 1985).
TN or TN93	5	Like HKY but unequal purine/pyrimidine rates (Tamura and Nei, 1993).
TNe	2	Like TN but equal base freq.
K81 or K3P	2	Three substitution types model and equal base freq. (Kimura, 1981).
K81u	5	Like K81 but unequal base freq.
TPM2	2	AC-AT, AG-CT, CG-GT and equal base freq.
TPM2u	5	Like TPH2 but unequal base freq.
TPM3	2	AC=CG, AG=CT, AT=GT and equal base freq.
TPM3u	5	Like TPH3 but unequal base freq.
TIM	6	Transition model, AC=GT, AT=CG and unequal base freq.
TIMe	3	Like TIM but equal base freq.
TIM2	6	AC=AT, CG=GT and unequal base freq.
TIM2e	3	Like TIM2 but equal base freq.
TIM3	6	AC=CG, AT=GT and unequal base freq.
TIM3e	3	Like TIM3 but equal base freq.
TVM	7	Transversion model, AG=CT and unequal base freq.
TVMe	4	Like TVM but equal base freq.
SYM	5	Symmetric model with unequal rates but equal base freq. (Zharkikh, 1994).
GTR	8	General time reversible model with unequal rates and unequal base freq. (Tavare, 1986).

iqtree.org

- +I, +G, +I+G, +R, +I, +Asc, +F, +FQ, +FO = 286 models
- 195 codon models
- Not even including partitioning or mixtures

Even More Protein Evolution Models

Model	Region	Explanation
Biosum62	nuclear	BLOcks SUbstitution Matrix (Henikoff and Henikoff, 1992). Note that BLOSUM62 is not recommended to phylogenetic analysis as it was designed mainly for sequence alignments.
cpREV	chloroplast	chloroplast matrix (Adachi et al., 2000).
Dayhoff	nuclear	General matrix (Dayhoff et al., 1978).
DCMut	nuclear	Revised payhoff matrix (Kosiol and Goldman, 2005).
FLU	viral	Influenza virus (Dang et al., 2010).
HIVb	viral	HIV between-patient matrix HIV-B _m (Nickle et al., 2007).
HIVw	viral	HIV within-patient matrix HIV-W _m (Nickle et al., 2007).
JTT	nuclear	General matrix (Jones et al., 1992).
JTTDCMut	nuclear	Revised JTT matrix (Kosiol and Goldman, 2005).
LG	nuclear	General matrix (Le and Gascuel, 2008).
mtART	mitochondrial	Mitochondrial Arthropoda (Abascal et al., 2007).
MAMtm	mitochondrial	Mitochondrial Mammalia (Yang et al., 1998).
mtREV	mitochondrial	Mitochondrial Vertebrate (Adachi and Hasegawa, 1996).
mtZOA	mitochondrial	Mitochondrial Metazoa (Animals) (Rota-Stabelli et al., 2009).
mtMet	mitochondrial	Mitochondrial Metazoa (Vinh et al., 2017).
mtVer	mitochondrial	Mitochondrial Verlebrate (Vinh et al., 2017).
mtirw	mitochondrial	Mitochondrial Inverterbrate (Vinh et al., 2017).
Poisson	none	Equal amino-acid exchange rates and frequencies.
PMB	nuclear	Probability Matrix from Blocks, revised BLOSUM matrix (Veerassamy et al., 2004).
rtREV	viral	Retrovirus (Dimmic et al., 2002).
VT	nuclear	General 'Variable Time' matrix (Mueller and Vingron, 2000).
WAG	nuclear	General matrix (Whelan and Goldman, 2001).
GTR20	general	General time reversible models with 190 rate parameters. WARNING: Be careful when using this parameter-rich model as parameter estimates might not be stable, especially when not having enough christeenetic information (e.g. not inco enough alignments).

iqtree.org

- +I, +G, +I+G, +R, +I, +Asc, +F, +FQ, +FO = 539 models
- Also not including even more mixture models

What happens theoretically if the wrong model is specified?

• Increased Inaccuracy (wrong tree more often)

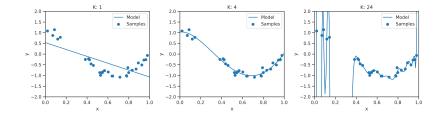
What happens theoretically if the wrong model is specified?

- Increased Inaccuracy (wrong tree more often)
- Inconsistency (adding more data converges to wrong tree)

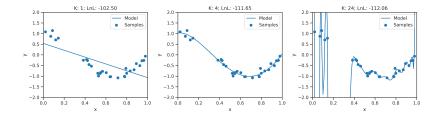
- Increased Inaccuracy (wrong tree more often)
- Inconsistency (adding more data converges to wrong tree)
- Wrong branch lengths (important for certain analyses)

- Increased Inaccuracy (wrong tree more often)
- Inconsistency (adding more data converges to wrong tree)
- Wrong branch lengths (important for certain analyses)
- Wrong tree support values

How do we select a model?

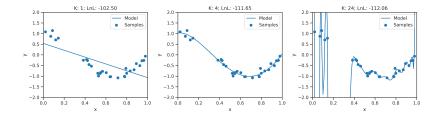


Model Likelihood



· $\mathcal{L}(\theta|X) = p(X|\theta)$

Model Likelihood



•
$$\mathcal{L}(\theta|X) = p(X|\theta)$$

· $\ell = ln(\mathcal{L})$

+ Model Maximum Likelihood ($\hat{\ell})$ + Model Complexity (K) Penalty Term

- + Model Maximum Likelihood ($\hat{\ell})$ + Model Complexity (K) Penalty Term
- Akaike Information Criterion (AIC)

- + Model Maximum Likelihood ($\hat{\ell})$ + Model Complexity (K) Penalty Term
- Akaike Information Criterion (AIC)
- AIC = $-2\hat{\ell} + 2K$

- + Model Maximum Likelihood ($\hat{\ell})$ + Model Complexity (K) Penalty Term
- Akaike Information Criterion (AIC)
- AIC = $-2\hat{\ell} + 2K$
- Applying to phylogenies: τ and θ are the parameters we care about

- + Model Maximum Likelihood ($\hat{\ell})$ + Model Complexity (K) Penalty Term
- Akaike Information Criterion (AIC)
- AIC = $-2\hat{\ell} + 2K$
- Applying to phylogenies: τ and θ are the parameters we care about
- Infer quick phylogeny on your alignment: $\ell(\tau, \theta | X) = p(X | \tau, \theta)$

• AIC: minimise $-2\hat{\ell} + 2K$

- AIC: minimise $-2\hat{\ell} + 2K$
- AICc: AIC + $\frac{2K(K+1)}{n-K-1}$

- AIC: minimise $-2\hat{\ell} + 2K$
- AICc: AIC + $\frac{2K(K+1)}{n-K-1}$
- **BIC**: minimise $-2\hat{\ell} + K \ln n$

- AIC: minimise $-2\hat{\ell} + 2K$
- AICc: AIC + $\frac{2K(K+1)}{n-K-1}$
- **BIC**: minimise $-2\hat{\ell} + K \ln n$
- DT: BIC + relative branch-length error

- AIC: minimise $-2\hat{\ell} + 2K$
- AICc: AIC + $\frac{2K(K+1)}{n-K-1}$
- **BIC**: minimise $-2\hat{\ell} + K \ln n$
- DT: BIC + relative branch-length error
- BF: ratio of marginal likelihoods

• What if everything fits poorly?

- What if everything fits poorly?
- Relative goodness of fit NOT absolute

- What if everything fits poorly?
- Relative goodness of fit NOT absolute
- Parametric Bootstrapping/Posterior Predictive Simulation

- What if everything fits poorly?
- Relative goodness of fit NOT absolute
- Parametric Bootstrapping/Posterior Predictive Simulation
- If the model is reasonable then data simulated under should resemble the empirical data

nature communications

Article | Open Access | Published: 25 February 2019

Model selection may not be a mandatory step for phylogeny reconstruction

Shiran Abadi, Dana Azouri, Tal Pupko 🖂 & Itay Mayrose 🖂

Nature Communications 10, Article number: 934 (2019) Cite this article

Table 2 Percentage of accurate topologies				
Strategy/ simulation set	c _o	c 1	¢2	c ₃
AIC	50.51	50.44	50.64	36.50
AICc	50.51	50.47	50.58	36.60
BIC	50.44	50.47	50.69	35.80
DT	50.47	50.44	50.68	35.70
dLRT	50.29	50.26	50.78	35.50
BF	50.62			
GTR+I+G	50.82	50.94	51.11	36.40
JC	48.31	48.81	50.33	35.40
True model	50.17			

Table 2 Percentage of accurate topologies				
Strategy/ simulation set	c _o	c1	c2	с ₃
AIC	50.51	50.44	50.64	36.50
AICc	50.51	50.47	50.58	36.60
BIC	50.44	50.47	50.69	35.80
DT	50.47	50.44	50.68	35.70
dLRT	50.29	50.26	50.78	35.50
BF	50.62			
GTR+I+G	50.82	50.94	51.11	36.40
JC	48.31	48.81	50.33	35.40
True model	50.17			

[Abadi et al., 2019]

• Criteria are inconsistent (BIC/AIC disagree in 62% of cases)

Table 2 Percentage of accurate topologies				
Strategy/ simulation set	c _o	c1	c2	с ₃
AIC	50.51	50.44	50.64	36.50
AICc	50.51	50.47	50.58	36.60
BIC	50.44	50.47	50.69	35.80
DT	50.47	50.44	50.68	35.70
dLRT	50.29	50.26	50.78	35.50
BF	50.62			
GTR+I+G	50.82	50.94	51.11	36.40
JC	48.31	48.81	50.33	35.40
True model	50.17			

- Criteria are inconsistent (BIC/AIC disagree in 62% of cases)
- Different models change the distance matrix trivially.

Table 2 Percentage of accurate topologies				
Strategy/ simulation set	c _o	c 1	c ₂	с ₃
AIC	50.51	50.44	50.64	36.50
AICc	50.51	50.47	50.58	36.60
BIC	50.44	50.47	50.69	35.80
DT	50.47	50.44	50.68	35.70
dLRT	50.29	50.26	50.78	35.50
BF	50.62			
GTR+I+G	50.82	50.94	51.11	36.40
JC	48.31	48.81	50.33	35.40
True model	50.17			

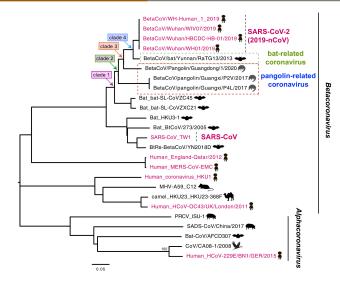
- Criteria are inconsistent (BIC/AIC disagree in 62% of cases)
- Different models change the distance matrix trivially.
- ALL models lead to generally similar topologies.

• Likely still matters in complex cases

- Likely still matters in complex cases
- Definitely matter a lot for inferences on tree e.g. branch lengths

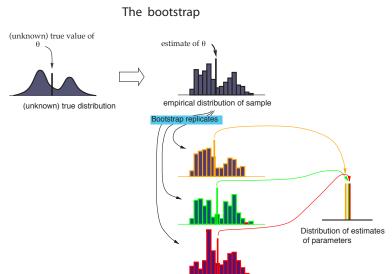
- Likely still matters in complex cases
- Definitely matter a lot for inferences on tree e.g. branch lengths
- Pretty quick and easy to do these days, so why not do it?

Testing Branch Support

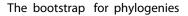


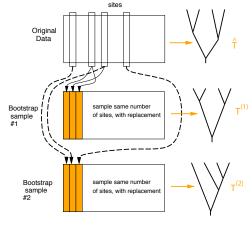
[Zhang et al., 2020] (disclaimer: better analyses exist but this was simplest)

Non-Parametric Bootstrapping in General



Bootstrapping Phylogenies

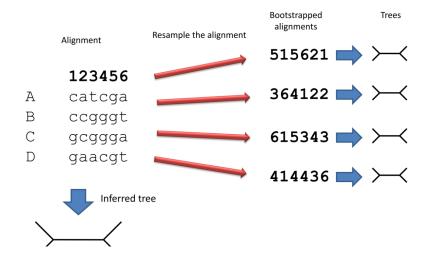




Slide from Joe Felsenstein

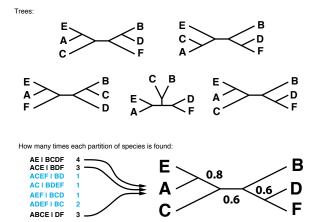
(and so on)

Bootstrapping Phylogenies

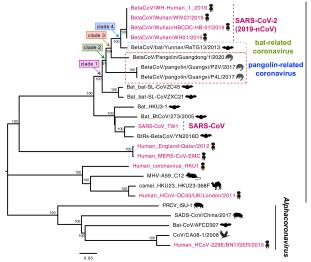


Bootstrapping Phylogenies

The majority-rule consensus tree



Combining the Results



Betacoronavirus

[Zhang et al., 2020]

• Randomly reweighing the sites in an alignments

- Randomly reweighing the sites in an alignments
- Probability of a site being excluded $1 \frac{1}{n}n$

- Randomly reweighing the sites in an alignments
- Probability of a site being excluded $1 \frac{1}{n}n$
- Goal to simulate an infinite population (number of alignment columns)

• Typically underestimates the true probabilities

- Typically underestimates the true probabilities
- i.e biased but conservative

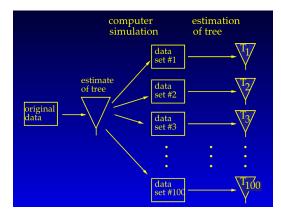
- Typically underestimates the true probabilities
- i.e biased but conservative
- Computationally demanding (redoing full inference for each replicate)

- Typically underestimates the true probabilities
- i.e biased but conservative
- Computationally demanding (redoing full inference for each replicate)
- Assumes independence of sites

- Typically underestimates the true probabilities
- i.e biased but conservative
- Computationally demanding (redoing full inference for each replicate)
- Assumes independence of sites
- Reliant on good input data

- Typically underestimates the true probabilities
- i.e biased but conservative
- Computationally demanding (redoing full inference for each replicate)
- Assumes independence of sites
- Reliant on good input data
- Only answers to what extent does input data support a given part of the tree

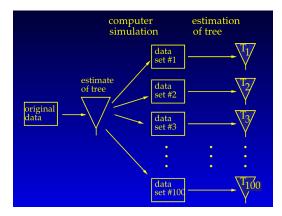
Parametric Bootstraps



Joe Felsenstein

• Key for many more sophisticated tests.

Parametric Bootstraps



Joe Felsenstein

- Key for many more sophisticated tests.
- Can be used to generate *p*-values, but non-trivial

• Rapid Bootstraps (**RBS**): optimise branch length/model once and focus only on topology

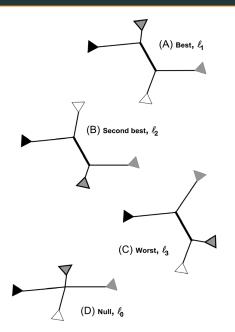
- Rapid Bootstraps (**RBS**): optimise branch length/model once and focus only on topology
- + Re-sampling estimated log-likelihoods (RELL): keep site-wise ℓ from tree-search

- Rapid Bootstraps (**RBS**): optimise branch length/model once and focus only on topology
- + Re-sampling estimated log-likelihoods (RELL): keep site-wise ℓ from tree-search
- Ultrafast Bootstraps (UFBoot): Use trees from tree-search + RELL

- Rapid Bootstraps (**RBS**): optimise branch length/model once and focus only on topology
- + Re-sampling estimated log-likelihoods (RELL): keep site-wise ℓ from tree-search
- Ultrafast Bootstraps (UFBoot): Use trees from tree-search + RELL
- Always remember to recycle your computational results!

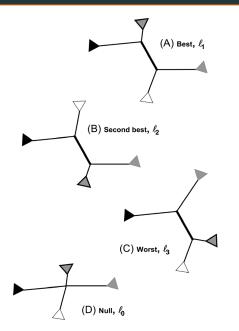
Is there a more efficient way?

Likelihood Tests



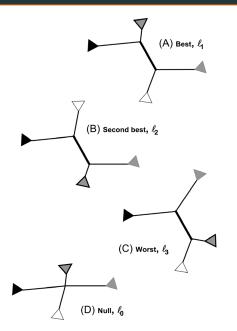
• Comparing the 3 nearest NNIs to a given branch:

Likelihood Tests



- Comparing the 3 nearest NNIs to a given branch:
- Parametric **aLRT**: χ^2 of δ for branch vs. closest NNIs

Likelihood Tests



- Comparing the 3 nearest NNIs to a given branch:
- Parametric **aLRT**: χ^2 of δ for branch vs. closest NNIs
- Non-parametric SH-aLRT based on RELL

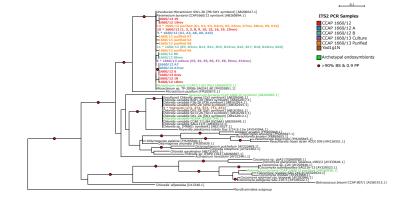
•
$$p(\theta, \tau | X) = \frac{p(X|\theta, \tau)p(\theta)}{p(X)}$$

- $p(\theta, \tau | X) = \frac{p(X|\theta, \tau)p(\theta)}{p(X)}$
- Use MCMC to deal with intractable p(X)

- $p(\theta, \tau | X) = \frac{p(X|\theta, \tau)p(\theta)}{p(X)}$
- Use MCMC to deal with intractable p(X)
- Frequency of clade in samples at stationarity: **posterior probability** of clade

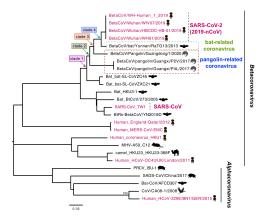
- $p(\theta, \tau | X) = \frac{p(X|\theta, \tau)p(\theta)}{p(X)}$
- Use MCMC to deal with intractable p(X)
- Frequency of clade in samples at stationarity: **posterior probability** of clade
- aBayes: estimate PP per branch from NNIs

Standard Approach: Use Multiple Methods



Comparing Trees

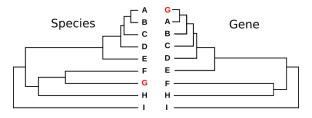
Competing Hypotheses



Rival Hypotheses

- ((Human, Bat), Pangolin)
- ((Human, Pangolin), Bat)

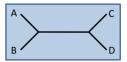
Rejecting Species Tree

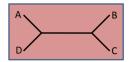


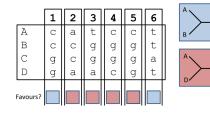
Lateral Gene Transfer

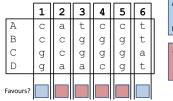
Simplistic Comparison

	1	2	3	4	5	6	
А	С	а	t	С	С	t	
В	С	С	g	g	g	t	
С	g	С	g	g	g	а	
D	g	а	а	С	g	t	
Favours?							

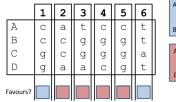




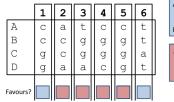




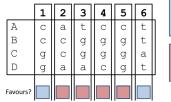
- 4 sites favour the red tree, 2 favour the blue
- $\binom{n}{k}p^{k}(1-p)^{n-k}$



- 4 sites favour the red tree, 2 favour the blue
- $\binom{n}{k}p^{k}(1-p)^{n-k}$
- 4 out of 6 *p* = 0.6875



- 4 sites favour the red tree, 2 favour the blue
- $\binom{n}{k}p^k(1-p)^{n-k}$
- 4 out of 6 *p* = 0.6875
- 40 out of 60 *p* = 0.0124



- 4 sites favour the red tree, 2 favour the blue
- $\binom{n}{k} p^{k} (1-p)^{n-k}$
- 4 out of 6 *p* = 0.6875
- 40 out of 60 *p* = 0.0124
- 400 out of 600 $p = 2.3 * 10^{-16}$

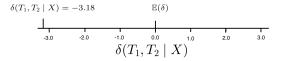
• Null: if no sampling error (infinite data) *T*₁ and *T*₂ would explain the data equally well.

- Null: if no sampling error (infinite data) *T*₁ and *T*₂ would explain the data equally well.
- $\delta(T_1, T_2 \mid X) = 2 [\ell(T_1 \mid X) \ell(T_2 \mid X)]$

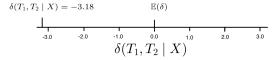
- Null: if no sampling error (infinite data) *T*₁ and *T*₂ would explain the data equally well.
- $\delta(T_1, T_2 \mid X) = 2 [\ell(T_1 \mid X) \ell(T_2 \mid X)]$
- Expectation under null: $\mathbb{E} [\delta(T_1, T_2 \mid X)] = 0$

- Null: if no sampling error (infinite data) *T*₁ and *T*₂ would explain the data equally well.
- $\delta(T_1, T_2 \mid X) = 2 [\ell(T_1 \mid X) \ell(T_2 \mid X)]$
- Expectation under null: $\mathbb{E}[\delta(T_1, T_2 \mid X)] = 0$
- Slides modified from Mark Holder

• *T*₁ is ((Human, Bat), Pangolin) ℓ(*T*₁ | *X*) = −7363.296



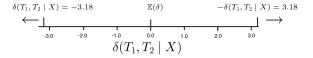
- T_1 is ((Human, Bat), Pangolin) $\ell(T_1 | X) = -7363.296$
- *T*₂ is ((Human, Pangolin), Bat) ℓ(*T*₁ | *X*) = −7361.707



- T_1 is ((Human, Bat), Pangolin) $\ell(T_1 | X) = -7363.296$
- *T*₂ is ((Human, Pangolin), Bat) ℓ(*T*₁ | *X*) = −7361.707
- $\cdot \ \delta(T_1,T_2|X) = -3.18$

To get the P-value, we need to know the probability:

$$\Pr\left(\left|\delta(T_1, T_2 \mid X)\right| \ge 3.18 \left| H_0 \text{ is true} \right)\right)$$



• Examine the difference in ℓ for each site: $\delta(T_1, T_2 \mid X_i)$ for site *i*.

- Examine the difference in ℓ for each site: $\delta(T_1, T_2 \mid X_i)$ for site *i*.
- Note that the total difference is simply a sum:

$$\delta(T_1,T_2 \mid X) = \sum_{i=1}^M \delta(T_1,T_2 \mid X_i)$$

- Examine the difference in ℓ for each site: $\delta(T_1, T_2 \mid X_i)$ for site *i*.
- Note that the total difference is simply a sum:

$$\delta(T_1,T_2 \mid X) = \sum_{i=1}^{M} \delta(T_1,T_2 \mid X_i)$$

• The variance of $\delta(T_1, T_2 \mid X)$ will be a function of the variance in "site" $\delta(T_1, T_2 \mid X_i)$ values.

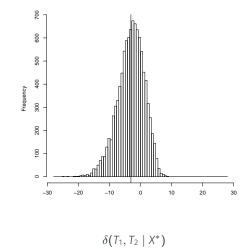
To approximate variance of $\delta(T_1, T_2 \mid X)$ under the null, we could:

• Use assumptions of Normality (Central Limit Theorem)

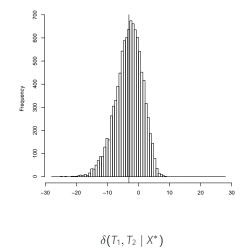
To approximate variance of $\delta(T_1, T_2 \mid X)$ under the null, we could:

- Use assumptions of Normality (Central Limit Theorem)
- Use bootstrapping to generate a cloud of pseudo-replicate $\delta(T_1, T_2 \mid X^*)$ values, and look at their variance

Many RELL bootstraps later:



Many RELL bootstraps later:



• Is this our null?

KH Test - 'centering'

 \cdot H₀ gives us the expected value:

 $\mathbb{E}_{H_0}\left[\delta(T_1,T_2\mid X)\right]=0$

KH Test - 'centering'

 \cdot H_{0} gives us the expected value:

$$\mathbb{E}_{H_0}\left[\delta(T_1,T_2\mid X)\right]=0$$

- Bootstrapping gives us a reasonable guess of the variance under H_0

KH Test - 'centering'

 \cdot H₀ gives us the expected value:

$$\mathbb{E}_{H_0}\left[\delta(T_1,T_2\mid X)\right]=0$$

- Bootstrapping gives us a reasonable guess of the variance under H_0
- By subtracting the mean of the bootstrapped $\delta(T_1, T_2 \mid X^*)$ values, we can create a null distribution.

KH Test - 'centering'

 \cdot H₀ gives us the expected value:

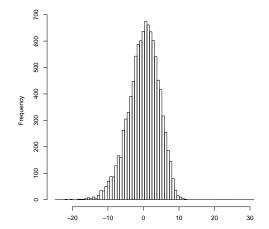
$$\mathbb{E}_{H_0}\left[\delta(T_1,T_2\mid X)\right]=0$$

- Bootstrapping gives us a reasonable guess of the variance under $\ensuremath{\textit{H}_0}$
- By subtracting the mean of the bootstrapped $\delta(T_1, T_2 \mid X^*)$ values, we can create a null distribution.
- For each of the *j* bootstrap replicates, we treat:

$$\delta(T_1,T_2 \mid X^{*j}) - \bar{\delta}(T_1,T_2 \mid X^*)$$

as draws from the null distribution.

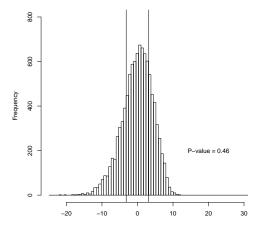
A null at last



 $\delta(T_1,T_2 \mid X^{(j)}) - \overline{\delta}(T_1,T_2 \mid X^*)$

A null at last

Approximate null distribution with tails (absolute value \geq 3.18) shown:



• Multiple Comparisons: lots of trees increases the variance of $\delta(\hat{T}, T_1 \mid X)$

- Multiple Comparisons: lots of trees increases the variance of $\delta(\hat{T}, T_1 \mid X)$
- Selection bias: Picking the ML tree to serve as one of the hypotheses invalidates the centering procedure of the KH test

- Multiple Comparisons: lots of trees increases the variance of $\delta(\hat{T}, T_1 \mid X)$
- Selection bias: Picking the ML tree to serve as one of the hypotheses invalidates the centering procedure of the KH test
- $\mathbb{E}_{H_0} [\delta(T_1, T_2 \mid X)]! = 0$ if choosing best vs rest

· Shimodaira-Hasegawa Test:

- · Shimodaira-Hasegawa Test:
- Compares candidate tree sets

- Shimodaira-Hasegawa Test:
- Compares candidate tree sets
- $H_0 =$ all topologies equally good

- Shimodaira-Hasegawa Test:
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- \cdot Very conservative when the number of candidate trees is large

- Shimodaira-Hasegawa Test:
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.

- Shimodaira-Hasegawa Test:
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- Approximately Unbiased Test:

- Shimodaira-Hasegawa Test:
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- \cdot Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- Approximately Unbiased Test:
- Achieves weighting by varying bootstrap size for each tree.

- Shimodaira-Hasegawa Test:
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- \cdot Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- Approximately Unbiased Test:
- Achieves weighting by varying bootstrap size for each tree.
- Better for larger comparisons, but slow.

- Shimodaira-Hasegawa Test:
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- \cdot Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- Approximately Unbiased Test:
- Achieves weighting by varying bootstrap size for each tree.
- Better for larger comparisons, but slow.
- Swofford-Olsen-Waddell-Hillis:

- Shimodaira-Hasegawa Test:
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- \cdot Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- Approximately Unbiased Test:
- Achieves weighting by varying bootstrap size for each tree.
- Better for larger comparisons, but slow.
- · Swofford-Olsen-Waddell-Hillis:
- Same idea but uses parametric bootstraps instead.

- Shimodaira-Hasegawa Test:
- Compares candidate tree sets
- $H_0 =$ all topologies equally good
- \cdot Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.
- Approximately Unbiased Test:
- Achieves weighting by varying bootstrap size for each tree.
- Better for larger comparisons, but slow.
- Swofford-Olsen-Waddell-Hillis:
- · Same idea but uses parametric bootstraps instead.
- Sensitive to model misspecification

Conclusion

• Phylogenies can be wrong for many reasons: bad data, sampling, pesky evolution

- Phylogenies can be wrong for many reasons: bad data, sampling, pesky evolution
- Standard model selection principles apply to selection of sequence evolution models

- Phylogenies can be wrong for many reasons: bad data, sampling, pesky evolution
- Standard model selection principles apply to selection of sequence evolution models
 - Higehst likelihood model penalised by complexity

- Phylogenies can be wrong for many reasons: bad data, sampling, pesky evolution
- Standard model selection principles apply to selection of sequence evolution models
 - Higehst likelihood model penalised by complexity
 - $\cdot\,$ Matters little for some things and lots for others

- Phylogenies can be wrong for many reasons: bad data, sampling, pesky evolution
- Standard model selection principles apply to selection of sequence evolution models
 - Higehst likelihood model penalised by complexity
 - $\cdot\,$ Matters little for some things and lots for others
- Bootstrapping in its various guises is a good way to estimate robustness of your branches

- Phylogenies can be wrong for many reasons: bad data, sampling, pesky evolution
- Standard model selection principles apply to selection of sequence evolution models
 - Higehst likelihood model penalised by complexity
 - $\cdot\,$ Matters little for some things and lots for others
- Bootstrapping in its various guises is a good way to estimate robustness of your branches
 - Likelihood tests offer a quicker alternative

- Phylogenies can be wrong for many reasons: bad data, sampling, pesky evolution
- Standard model selection principles apply to selection of sequence evolution models
 - Higehst likelihood model penalised by complexity
 - $\cdot\,$ Matters little for some things and lots for others
- Bootstrapping in its various guises is a good way to estimate robustness of your branches
 - Likelihood tests offer a quicker alternative
 - Branch support is built into Bayesian inferences

- Phylogenies can be wrong for many reasons: bad data, sampling, pesky evolution
- Standard model selection principles apply to selection of sequence evolution models
 - Higehst likelihood model penalised by complexity
 - $\cdot\,$ Matters little for some things and lots for others
- Bootstrapping in its various guises is a good way to estimate robustness of your branches
 - Likelihood tests offer a quicker alternative
 - Branch support is built into Bayesian inferences
 - Use multiple lines of evidence

- Phylogenies can be wrong for many reasons: bad data, sampling, pesky evolution
- Standard model selection principles apply to selection of sequence evolution models
 - Higehst likelihood model penalised by complexity
 - $\cdot\,$ Matters little for some things and lots for others
- Bootstrapping in its various guises is a good way to estimate robustness of your branches
 - Likelihood tests offer a quicker alternative
 - Branch support is built into Bayesian inferences
 - Use multiple lines of evidence
- You can compare trees statistically, but:

- Phylogenies can be wrong for many reasons: bad data, sampling, pesky evolution
- Standard model selection principles apply to selection of sequence evolution models
 - Higehst likelihood model penalised by complexity
 - $\cdot\,$ Matters little for some things and lots for others
- Bootstrapping in its various guises is a good way to estimate robustness of your branches
 - Likelihood tests offer a quicker alternative
 - Branch support is built into Bayesian inferences
 - Use multiple lines of evidence
- You can compare trees statistically, but:
 - Tree-space makes things non-trivial

- Phylogenies can be wrong for many reasons: bad data, sampling, pesky evolution
- Standard model selection principles apply to selection of sequence evolution models
 - Higehst likelihood model penalised by complexity
 - $\cdot\,$ Matters little for some things and lots for others
- Bootstrapping in its various guises is a good way to estimate robustness of your branches
 - Likelihood tests offer a quicker alternative
 - Branch support is built into Bayesian inferences
 - Use multiple lines of evidence
- You can compare trees statistically, but:
 - Tree-space makes things non-trivial
 - Computationally demanding and easily biased

Questions?

Abadi, S., Azouri, D., Pupko, T., and Mayrose, I. (2019). Model selection may not be a mandatory step for phylogeny reconstruction.

Nature communications, 10(1):1–11.

Barton, N. H. (2007). *Evolution*.

Cold Spring Harbor Laboratory Press.

Dimmic, M. W., Rest, J. S., Mindell, D. P., and Goldstein, R. A. (2002). rtrev: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. Journal of molecular evolution, 55(1):65.

Leonard, G. (2010).

Development of fusion and duplication finder blast (fdfblast): a systematic tool to detect differentially distributed gene fusions and resolve trifurcations in the tree of life.

Marwick, B. (2012).

A cladistic evaluation of ancient thai bronze buddha images: six tests for a phylogenetic signal in the griswold collection. *Connecting empires,* pages 159–176.

Richards, T. A., Soanes, D. M., Foster, P. G., Leonard, G., Thornton, C. R., and Talbot, N. J. (2009). Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. *The Plant Cell*, 21(7):1897–1911.

Zhang, J., Jia, W., Zhu, J., Li, B., Xing, J., Liao, M., and Qi, W. (2020). Insights into the cross-species evolution of 2019 novel coronavirus.

Journal of Infection.