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Introduction



Phylogenies are hypotheses

Cid

Tetrahymena thermophila [XP_001012854.1]

Tetrahymena thermophila [XP_001012858.1]

Paramecium bursaria SW1 [comp3906_seq0_m.68533]

Paramecium bursaria SW1 [comp3906_seq0_m.68531]

Paramecium bursaria Yad1g [TR17851_c0_g1_i8_m.235761]

Paramecium bursaria Yad1g [TR432_c1_g1_i2_m.4057]

80.7%/0.93

Paramecium biaurelia [PBIGNP33303]

Paramecium tetaurelia Cid3 [GSPATP00025353001]

Paramecium sexaurelia [PSEXPNG26288]

89.8%/0.94

Paramecium multimicronucleatum [PMMNP07604]

99.8%/1.00

Paramecium caudatum [PCAUDP10462]

91%/0.93

Paramecium tetaurelia Cid1 (Marker, 2014) [PTETP9100013001]

Paramecium biaurelia [PBIGNP26212]

Paramecium primaurelia [PPRIMP23072]

5%/0.51

Paramecium sexaurelia [PSEXPNG26738]

42%/0.71

Paramecium multimicronucleatum [PMMNP02964] 

98.9%/0.99

Paramecium caudatum [PCAUDP15935]

55.4%/0.63

99.7%/1.00

59.5%/0.67

100%/1.00

97.9%/1.00

Paramecium caudatum [PSEXPNG26858]

Paramecium multimicronucleatum [PMMNP03007]

Paramecium sexaurelia [PSEXPNG26858]

Paramecium primaurelia [PPRIMP27560]

Paramecium biaurelia [PBIGNP11073]

Paramecium tetaurelia Cid2 (Marker, 2014) [PTETP13400003001]
84.1%/0.91

83%/0.88

95.3%/0.96

83.9%/0.88

59.1%/0.54

99.7%/1.00

86.7%/0.69

100%/1.00

0.2

Cid2

Cid1

Cid3

Cid1-3
Ancestor?

Hypotheses can be wrong 1



Assessing phylogenetic accuracy

bit.ly/3dHBiPT

• Consistency

• Efficiency
• Robustness
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Sources of Error: Bad Data

Throw unrelated sequences at an aligner
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Sources of Error: Bad Data

Throw alignment at a trimmer
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Sources of Error: Sampling

[Barton, 2007]
5



Choosing the wrong model

[Dimmic et al., 2002]
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Choosing the wrong paradigm

Ask for a tree get a tree.
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Tree not always correct paradigm

Ask for a tree get a tree.

Reanalysis of [Marwick, 2012] from
http://phylonetworks.blogspot.ca/2013/02/
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http://phylonetworks.blogspot.ca/2013/02/


Misleading Evolutionary Signals: Saturation

[Leonard, 2010]
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Misleading Evolutionary Signals: Recombination
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Misleading Evolutionary Signals: Hidden Paralogy/Incomplete
Sampling

[Leonard, 2010]
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Misleading Evolutionary Signals: Horizontal Gene Transfer

[Leonard, 2010]
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Misleading Evolutionary Signals: Horizontal Gene Transfer

[Richards et al., 2009] 13



Phylogenetic Statistics: Overview

1. Sequence Evolution Model Selection

2. Testing Branch Support

3. Comparing Trees

14



Sequence Evolution Model
Selection



Lots of Nucleotide Evolution Models

iqtree.org

• +I, +G, +I+G, +R, +I, +Asc, +F, +FQ, +FO = 286 models
• 195 codon models
• Not even including partitioning or mixtures

15

iqtree.org


Even More Protein Evolution Models

iqtree.org

• +I, +G, +I+G, +R, +I, +Asc, +F, +FQ, +FO = 539 models
• Also not including even more mixture models

16

iqtree.org


What happens theoretically if the wrong model is specified?

• Increased Inaccuracy (wrong tree more often)

• Inconsistency (adding more data converges to wrong tree)
• Wrong branch lengths (important for certain analyses)
• Wrong tree support values
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How do we select a model?

18



Model Likelihood

• L(θ|X) = p(X|θ)

• ℓ = ln(L)
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Model Likelihood

• L(θ|X) = p(X|θ)
• ℓ = ln(L)
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Information Criterion

• Model Maximum Likelihood (ℓ̂) + Model Complexity (K) Penalty
Term

• Akaike Information Criterion (AIC)
• AIC = −2ℓ̂+ 2K
• Applying to phylogenies: τ and θ are the parameters we care
about

• Infer quick phylogeny on your alignment: ℓ(τ, θ|X) = p(X|τ, θ)

20
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Other criteria

• AIC: minimise −2ℓ̂+ 2K

• AICc: AIC + 2K(K+1)
n−K−1

• BIC: minimise −2ℓ̂+ K lnn
• DT: BIC + relative branch-length error
• BF: ratio of marginal likelihoods

21



Other criteria

• AIC: minimise −2ℓ̂+ 2K
• AICc: AIC + 2K(K+1)

n−K−1

• BIC: minimise −2ℓ̂+ K lnn
• DT: BIC + relative branch-length error
• BF: ratio of marginal likelihoods

21



Other criteria

• AIC: minimise −2ℓ̂+ 2K
• AICc: AIC + 2K(K+1)

n−K−1

• BIC: minimise −2ℓ̂+ K lnn

• DT: BIC + relative branch-length error
• BF: ratio of marginal likelihoods

21



Other criteria

• AIC: minimise −2ℓ̂+ 2K
• AICc: AIC + 2K(K+1)

n−K−1

• BIC: minimise −2ℓ̂+ K lnn
• DT: BIC + relative branch-length error

• BF: ratio of marginal likelihoods

21



Other criteria

• AIC: minimise −2ℓ̂+ 2K
• AICc: AIC + 2K(K+1)

n−K−1

• BIC: minimise −2ℓ̂+ K lnn
• DT: BIC + relative branch-length error
• BF: ratio of marginal likelihoods

21



Limitations

• What if everything fits poorly?

• Relative goodness of fit NOT absolute
• Parametric Bootstrapping/Posterior Predictive Simulation
• If the model is reasonable then data simulated under should
resemble the empirical data
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Does it REALLY matter?

[Abadi et al., 2019]

• Criteria are inconsistent (BIC/AIC disagree in 62% of cases)
• Different models change the distance matrix trivially.
• ALL models lead to generally similar topologies.
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But!

• Likely still matters in complex cases

• Definitely matter a lot for inferences on tree e.g. branch lengths
• Pretty quick and easy to do these days, so why not do it?
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Testing Branch Support



Pangolin or Bat?

[Zhang et al., 2020] (disclaimer: better analyses exist but this was simplest)
25



Non-Parametric Bootstrapping in General

The bootstrap

(unknown) true value of  

(unknown) true distribution empirical distribution of sample

estimate of  

Distribution of estimates
 of parameters

Bootstrap replicates

Slide from Joe Felsenstein 26



Bootstrapping Phylogenies

The bootstrap for phylogenies

Original
Data

sites

Bootstrap
sample
#1

Bootstrap
sample

#2

sample same number
of sites, with replacement

sample same number
of sites, with replacement

(and so on)

T
^

T(1)

T(2)

Slide from Joe Felsenstein
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Bootstrapping Phylogenies

28



Bootstrapping Phylogenies

The majority-rule consensus tr ee

C
A

Trees:

How many times each partition of species is found:

AE | BCDF 4
ACE | BDF 3
ACEF | BD 1
AC | BDEF 1
AEF | BCD 1
ADEF | BC 2
ABCE | DF 3

B
D
F

E
C
A

B
D
F

E

C
A

B
D
F

E

C
A

B

D
F

E

C

A

B

DF

E
A C

B
D
F

E
0.6

0.6
0.8

Slide from Joe Felsenstein 29



Combining the Results

[Zhang et al., 2020]
30



What are Non-Parametric Bootstraps Doing?

• Randomly reweighing the sites in an alignments

• Probability of a site being excluded 1− 1
nn

• Goal to simulate an infinite population (number of alignment
columns)
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Limitations

• Typically underestimates the true probabilities

• i.e biased but conservative
• Computationally demanding (redoing full inference for each
replicate)

• Assumes independence of sites
• Reliant on good input data
• Only answers to what extent does input data support a given
part of the tree

32



Limitations

• Typically underestimates the true probabilities
• i.e biased but conservative

• Computationally demanding (redoing full inference for each
replicate)

• Assumes independence of sites
• Reliant on good input data
• Only answers to what extent does input data support a given
part of the tree

32



Limitations

• Typically underestimates the true probabilities
• i.e biased but conservative
• Computationally demanding (redoing full inference for each
replicate)

• Assumes independence of sites
• Reliant on good input data
• Only answers to what extent does input data support a given
part of the tree

32



Limitations

• Typically underestimates the true probabilities
• i.e biased but conservative
• Computationally demanding (redoing full inference for each
replicate)

• Assumes independence of sites

• Reliant on good input data
• Only answers to what extent does input data support a given
part of the tree

32



Limitations

• Typically underestimates the true probabilities
• i.e biased but conservative
• Computationally demanding (redoing full inference for each
replicate)

• Assumes independence of sites
• Reliant on good input data

• Only answers to what extent does input data support a given
part of the tree

32



Limitations

• Typically underestimates the true probabilities
• i.e biased but conservative
• Computationally demanding (redoing full inference for each
replicate)

• Assumes independence of sites
• Reliant on good input data
• Only answers to what extent does input data support a given
part of the tree

32



Parametric Bootstraps

Joe Felsenstein

• Key for many more sophisticated tests.

• Can be used to generate p-values, but non-trivial
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Speeding-up Bootstraps

• Rapid Bootstraps (RBS): optimise branch length/model once
and focus only on topology

• Re-sampling estimated log-likelihoods (RELL): keep site-wise ℓ

from tree-search
• Ultrafast Bootstraps (UFBoot): Use trees from tree-search + RELL
• Always remember to recycle your computational results!

34
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Is there a more efficient way?



Likelihood Tests

• Comparing the 3 nearest NNIs
to a given branch:

• Parametric aLRT: χ2 of δ for
branch vs. closest NNIs

• Non-parametric SH-aLRT
based on RELL

35
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Bayesian inference

• p(θ, τ |X) = p(X|θ,τ)p(θ)
p(X)

• Use MCMC to deal with intractable p(X)
• Frequency of clade in samples at stationarity: posterior
probability of clade

• aBayes: estimate PP per branch from NNIs

36
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Standard Approach: Use Multiple Methods

'Chlorella' ellipsoidea [D13340.1]
Botryococcus braunii CCAP 807/1 [AJ581913.1]

Coccomyxa peltigerae SAG 216-5 [AY328522.1]
Coccomyxa solarinae var. bisporae [AY293966.1]

Coccomyxa chodatii [AY293968.1]
Coccomyxa rayssiae SAG 216-8 [AY328524.1]

Paramecium bursaria CCAP 1660/13 symbiont [AB260896.1]
Coccomyxa subellipsoidea SAG216-13 [AY328523.1]

Coccomyxa sp. C20 [AY293946.1]
Coccomyxa glaronensis Takacova 1983/2 [AY333646.1]

Coccomyxa sp. gbA3 [DQ660909.1]
Actinastrum hantzschii [AY323461.1]

Chlorella sp. IFRPD 1014 [AB260897.1]
Chlorella sorokiniana [AB731601.1]

Chlorella lobophora [AY323462.1]
Dictyosphaerium pulchellum [AY323469.1]

Didymogenes anomala [FM205839.1]
Didymogenes palatina [FM205840.1] Parachlorella hussii strain ACOI 939 [HM126551.1]

Parachlorella beijerinckii [FM205845.1]
Parachlorella kessleri [FR865655.1]

Closteriopsis acicularis [FM205847.1]
Dicloster acuatus [FM205848.1]Meyerella planktonica isolate Itas 2/24 S-12w [AY543044.1]

Chlorella sp. [MRBG1 symbiont] [AB219527.1]
Chlorella variabilis SAG211/6 [AB301072.1]
Chlorella variabilis CCAP 211/84 [NC64A] [AB206549.1]

Chlorella variabilis OK1-ZK [OK1 symbiont] [AB162912.1]
Chlorella variabilis So13-ZK [So13 symbiont] [AB162913.1]
Chlorella variabilis Dd1-ZK [Dd1 symbiont] [AB162916.1]
Chlorella variabilis KM2-ZK [KM2 symbiont] [AB162915.1]
Chlorella variabilis F36-ZK [F36 symbiont] [AB162914.1]
Chlorella variabilis Bnd1-ZK [Bnd1 symbiont] [AB162917.1]
Uncultured Chlorella genes [Cs2 symbiont] [AB206546.1]

Chlorella variabilis NC64A [DQ057340.1]

5 * Yad1g1N (1T3, 3T3, 5T3, 7T3, 8T3)

Paramecium bursaria CCAP 1660/10 symbiont [AB260895.1]
Micractinium pusillum [FM205872.1]

Micractinium sp. TP-2008b SAG241.80 [FM205851.1]
Micractinium reisseri CCAP211/83 [Pbi] [AB506070.1]

10 * 1660/13 purified (K1, K2, K3, K4rev, K5, K6rev, K7rev, K8rev, K9, K10)

Paramecium bursaria CCAP1660/12 symbiont [AB260894.1]
Uncultured Micractinium SW1-ZK [PB-SW1 symbiont] [AB206547.1]

0.1

>90% BS & 0.9 PP

 11 * 1660/12 (B3, B3rev, B12, B14, B15, B15rev, B16, B17, B18, B18rev, B20)

8 * 1660/13 culture (E3, E4, E5, E6, E7, E8, E9rev, E10rev)

1660/13 purified K8 

1660/13 purified K6 

1660/13 purified K4 
1660/13 purified K7 

1660/12 B6rev 
1660/12 B6

1660/12 19rev 
1660/12 19

1660/12 18rev 
1660/12 18

1660/12 A7
1660/12 A7rev
1660/12 6
1660/12 6rev

 5 * 1660/12 (A1, A3, A8, A9, A10)
10 * 1660/12 (1, 2, 3, 8, 9, 10, 15, 16, 19, 19rev)

CCAP 1660/12
CCAP 1660/12 A
CCAP 1660/12 B
CCAP 1660/13 Culture

Yad1g1N
CCAP 1660/13 Purified

Microthamniales outgroup

ITS2 PCR Samples

Archetypal endosymbionts

37



Comparing Trees



Competing Hypotheses

Rival Hypotheses

• ((Human, Bat), Pangolin)
• ((Human, Pangolin), Bat)

38



Rejecting Species Tree

Lateral Gene Transfer

39



Simplistic Comparison

40



Qualitative Comparison

• 4 sites favour the red tree, 2 favour the blue

•
(n
k
)
pk(1− p)n−k

• 4 out of 6 p = 0.6875
• 40 out of 60 p = 0.0124
• 400 out of 600 p = 2.3 ∗ 10−16
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More robust approach

• Null: if no sampling error (infinite data) T1 and T2 would explain
the data equally well.

• δ(T1, T2 | X) = 2 [ℓ(T1 | X)− ℓ(T2 | X)]
• Expectation under null: E [δ(T1, T2 | X)] = 0
• Slides modified from Mark Holder

42
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Using our SARS-CoV-2 example

• T1 is ((Human, Bat), Pangolin) ℓ(T1 | X) = −7363.296

• T2 is ((Human, Pangolin), Bat) ℓ(T1 | X) = −7361.707
• δ(T1, T2|X) = −3.18
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Getting a p-value?

To get the P-value, we need to know the probability:

Pr
(∣∣δ(T1, T2 | X)∣∣ ≥ 3.18

∣∣∣H0 is true)

44



Kishino-Hasegawa Test

• Examine the difference in ℓ for each site: δ(T1, T2 | Xi) for site i.

• Note that the total difference is simply a sum:

δ(T1, T2 | X) =
M∑
i=1

δ(T1, T2 | Xi)

• The variance of δ(T1, T2 | X) will be a function of the variance in
“site” δ(T1, T2 | Xi) values.
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KH Test - the variance of δ(T1, T2 | X)

To approximate variance of δ(T1, T2 | X) under the null, we could:

• Use assumptions of Normality (Central Limit Theorem)

• Use bootstrapping to generate a cloud of pseudo-replicate
δ(T1, T2 | X∗) values, and look at their variance
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Many RELL bootstraps later:
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• Is this our null?
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KH Test - ‘centering’

• H0 gives us the expected value:

EH0 [δ(T1, T2 | X)] = 0

• Bootstrapping gives us a reasonable guess of the variance
under H0

• By subtracting the mean of the bootstrapped δ(T1, T2 | X∗)
values, we can create a null distribution.

• For each of the j bootstrap replicates, we treat:

δ(T1, T2 | X∗j)− δ̄(T1, T2 | X∗)

as draws from the null distribution.
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A null at last
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A null at last

Approximate null distribution with tails (absolute value ≥ 3.18)
shown:
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Downsides of the KH-test

• Multiple Comparisons: lots of trees increases the variance of
δ(T̂, T1 | X)

• Selection bias: Picking the ML tree to serve as one of the
hypotheses invalidates the centering procedure of the KH test

• EH0 [δ(T1, T2 | X)]! = 0 if choosing best vs rest
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Alternative tests

• Shimodaira-Hasegawa Test:

• Compares candidate tree sets
• H0 = all topologies equally good
• Very conservative when the number of candidate trees is large
• Can be corrected with weighted SH-test overcomes.
• Approximately Unbiased Test:
• Achieves weighting by varying bootstrap size for each tree.
• Better for larger comparisons, but slow.
• Swofford–Olsen–Waddell–Hillis:
• Same idea but uses parametric bootstraps instead.
• Sensitive to model misspecification
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Conclusion



Summary

• Phylogenies can be wrong for many reasons: bad data,
sampling, pesky evolution

• Standard model selection principles apply to selection of
sequence evolution models

• Higehst likelihood model penalised by complexity
• Matters little for some things and lots for others

• Bootstrapping in its various guises is a good way to estimate
robustness of your branches

• Likelihood tests offer a quicker alternative
• Branch support is built into Bayesian inferences
• Use multiple lines of evidence

• You can compare trees statistically, but:

• Tree-space makes things non-trivial
• Computationally demanding and easily biased
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Questions?
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