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Introduction



Phylogenies are hypotheses

Cid

Paramecium tetaurelia Cid2 (Marker, 2014) [PTETP13400003001]

Paramecium biaurelia [PBIGNP11073]
o 1L paramecium primaurelia [PPRIMP27560]
Paramecium sexaurelia [PSEXPNG26856]

Paramecium multimicronucleatum [PMMNP03007]

‘Paramecium caudatum [PSEXPNG26858)

Paramecium caudatum [PCAUDP15935]

Paramecium sexaurelia [PSEXPNG26738]
T ~Paramecium primaurelia [PPRIMP23072]
Paramecium biaurelia [PBIGNP26212]

Paramecium tetaurelia Cid1 (Marker, 2014) [PTETP9100013001]

-Paramecium caudatum [PCAUDP10462]

Paramecium sexaurelia [PSEXPNG26288)

tetaurelia Cid3 [ ]

-Paramecium biaurelia [PBIGNP33303]
Paramecium bursaria Yad1g [TR432_c1_g1_i2_m.4057]

Paramecium bursaria Yad1g [TR17¢

_c0_g1_iB_m 235761]

Paramecium bursaria SW1 [comp3906_seq0_m.68531]

-Paramecium bursaria SW1 [comp3906_seq0_m.63533]
Tetrahymena thermophila [XP_001012856.1]

Tetrahymena thermophila [XP_001012854.1]

Hypotheses can be wrong

cig2

cidl

cid3

Cid1-3
Ancestor?



Assessing phylogenetic accuracy
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Assessing phylogenetic accuracy

bit.ly/3dHBiPT

- Consistency
- Efficiency
- Robustness


bit.ly/3dHBiPT
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Throw unrelated sequences at an aligner



Sources of Error: Bad Data

Throw alignment at a trimmer



Sources of Error: Sampling

A Real tree

B Inferred tree

[Barton, 2007]



Choosing the wrong model

rtREV: An Amino Acid Substitution Matrix for Inference of Retrovirus
and Reverse Transcriptase Phylogeny

Matthew W. Dimmic,' Joshua S. Rest,” David P. Mindell,’ Richard A. Goldstein"**

[Dimmic et al,, 2002]



Choosing the wrong paradigm

Ask for a tree get a tree.

ACCGAGCAA
ACCGAGCAA

ACCGAGCAA ~
ACCGAGCAA 1 3

ACCGAATGA ) 5 : :

ACCGAGCAG -
GTTAGGCAG
GTTAGATGA

DWW N

Sw N



Tree not always correct paradigm

Ask for a tree get a tree.

=%

W =

R

=

Reanalysis of [Marwick, 2012] from
http://phylonetworks.blogspot.ca/2013/02/


http://phylonetworks.blogspot.ca/2013/02/

Misleading Evolutionary Signals: Saturation

Number of Mutations

Time

[Leonard, 2010]



Misleading Evolutionary Signals: Recombination

——1—1—— Paralog1l
[
—l 1l ___  Paralog2



Misleading Evolutionary Signals: Hidden Paralogy/Incomplete

Sampling

Full sampling of gene family -
both paralogues tracing species
phylogeny (C,(B,A))

Incomplete sampling of gene
A - family - using a mixture of different
paralogues. Gene phylogeny is
inconsistent with species relationships
B - suggesting possible HGT (B,(C,A))

C &
cram B @B

B* @B c:ram

Ancestral gene
duplication

A aD Axam

[Leonard, 2010]

i



Misleading Evolutionary Signals: Horizontal Gene Transfer

1-A @D

Ancestral gene

- 2-B @D
3-A@D

4-8 @

[Leonard, 2010]



Misleading Evolutionary Signals: Horizontal Gene Transfer

Arabidopsis thaliana
Loss of phagotrophy

Populus trichocarpa
Oryza sativa

Sorghum bicolor
Selaginella moellendorffii

Rise of plant cell wall

Physcomitrella patens

Green Algae

Metazoa

Batrachochytrium dendrobatidis
Rhizopus oryzae

Phycomyces blakesleeanus
Ustilago maydis

Laccaria bicolor
Taphirionomycotina
Saccharomycotina

€

Loss of phagotrophy Histoplasma capsulatum

- Aspergillus nidulans
gceloiitndalicelial G Stagonospora nodorum

Sclerotinia sclerotiorum

: Botrytis cinerea
= Plant-Fungi lateral gene transfer 3 .
Plant-Fungi lateral gene transfer Trichoderma reesei

»==* potentially involving a prokaryote Neurospora crassa
intermediate

DI =~0O0<ION=NOT

[Richards et al., 2009] 13



Phylogenetic Statistics: Overview

1. Sequence Evolution Model Selection
2. Testing Branch Support

3. Comparing Trees

14



Sequence Evolution Model
Selection



Lots of Nucleotide Evolution Models

Model df Explanation
JCorC6s 0 Equalsubstiuton rates and equal base frequencies ( nd Gantor, 1969).

Fa1 3 Equalrates bul unequal base freq. %)

KeoorK2P 1 Unequal ansilon’ransversion rates and equal base freq. (Kimura, 19

HKY or HKY85 4 Unequal ransitionransversion rates and unequal bas freq. (Hasogawa, Kishino and 5
TNorTNG3 5 Like WKY but unequal purine/pyrimidine rates (Tamura and Nei, 1993).

™e 2 Like ™ but equal base freq

K8torKaP 2 Three substtton types model and equal base fre

Ketu 5 Lke Ke1 butunequal base freq.

P12 2 AG-AT, AG-CT, GG-GT and equal base freq

TPM2u 5 Like TPH2 but unequal base freq

T3 2 AC-CG. AG=CT, AT=GT and equal base freq

TPM3 5 Like TPM3 but unequal base freq

™ 6 Transifon model, AC-GT, AT-CG and unequal base freq

Tive 3 Like TIM but equal base freq.

Tz & AG-AT, CG-GT and unequal base freq.

Tivze 3 Like TIN2 but equal baso feg

™ 6 AG=CG, AT=GT and unequal base freq.

Tivge 3 Like TIMS but cqual base freq

™ 7 Transversion model, AG=CT and unequal base freq

Tve 4 Like v but equal base freq.

s 5 Symmetrc model with uneaualrates but equal base frea. (Znarkikh, 1994),

G1R & Genera o reversible model with uneaual ratos and unequal base freq. (Tavaro, 1986).

iqtree.org

-+, +G, +1+G, +R, +|, +Asc, +F, +FQ, +FO = 286 models
-+ 195 codon models
- Not even including partitioning or mixtures


iqtree.org

Even More Protein Evolution Models

Model  Region  Explanation
BLOcks SUbsifuion Maif (Henikof and Henikof. 1992). Note hat sLosunez is ol recommended for

Blosume2 | nUdea | o g enetc anaysis as it was designed mainy for sequence algnmens.

pREV | chioroplast | chioroplast matrx (Adachi et al, 200

Dagroft | nudear | Generalmatrx (Oayhaf el 1972}
DOMat  nudewr | Revised Dayhoff matnx 20051
U vl Infienza vius (Dang et I 2010).

HUb vl HIV between.patient mati VB, (Nicke

HUw vl HIV within-patient mairx HIV-Wy, (Nickle et a

art nudear | Generalmatr (Joncs otal. 1092)

JTTOGMut | nudear | Revised . malrx (Kosioland 2008
[0 nucear | General i (L=

MART | miochendrial | Witochondial Arhropoda (Abascal ot

mMAM | miochondrial | Witochondial Mammaiia (Yang ctal. 1998

MREY | miochandral | Witochondial Vertebrae (Adach and Fasegan, 19961,

mZOA | miochondrial | Witochonial Metazoa (Animals) (Rota-Stabell a1 2009).

miet | miochendral | Witochonial Metazoa (Vinh et

miVer | miochondrial Witochonial Vertebrae (Vi ¢t ol 2017)

minv | miochondral | Witochondial Invertrtrate (Vinn el 2017).

Poisson | none Equal amino-aci exchange raies and frequencies

PMB | nudew | Probabity M from Bocks. revised sLosuk max Veer 20
WREV vl Retrovius (O a

VT nudear | General Variable Tme' malic

nudear | General matix (Whela
General G
GTR20 |genera | paramet ecialy when

Py

iqtree.org

-+, +G, +1+G, +R, +I, +Asc, +F, +FQ, +FO = 539 models
- Also not including even more mixture models

16


iqtree.org

What happens theoretically if the wrong model is specified?

- Increased Inaccuracy (wrong tree more often)



What happens theoretically if the wrong model is specified?

- Increased Inaccuracy (wrong tree more often)

- Inconsistency (adding more data converges to wrong tree)



What happens theoretically if the wrong model is specified?

- Increased Inaccuracy (wrong tree more often)
- Inconsistency (adding more data converges to wrong tree)

- Wrong branch lengths (important for certain analyses)



What happens theoretically if the wrong model is specified?

- Increased Inaccuracy (wrong tree more often)
- Inconsistency (adding more data converges to wrong tree)
- Wrong branch lengths (important for certain analyses)

- Wrong tree support values



How do we select a model?

—— Model —— Model 154
1.54 e Samples 1.54 o Samples




Model Likelihood

K: 1; LnL: -102.50 K: 4; LnL: -111.65 K: 24; LnL: -112.06

—— Model —— Model
e Samples e Samples

- L(0]X) = p(X]0)

19



Model Likelihood

K: 1; LnL: -102.50 K: 4; LnL: -111.65 K: 24; LnL: -112.06

—— Model —— Model
e Samples e Samples

19



Information Criterion

- Model Maximum Likelihood () + Model Complexity (K) Penalty
Term

20



Information Criterion

- Model Maximum Likelihood () + Model Complexity (K) Penalty
Term

- Akaike Information Criterion (AIC)
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Information Criterion
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- Akaike Information Criterion (AIC)
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Information Criterion

- Model Maximum Likelihood () + Model Complexity (K) Penalty

Term
- Akaike Information Criterion (AIC)
< AIC = =20+ 2K

- Applying to phylogenies: 7 and 6 are the parameters we care
about

20



Information Criterion

- Model Maximum Likelihood () + Model Complexity (K) Penalty
Term

- Akaike Information Criterion (AIC)

- AIC = =20 + 2K

- Applying to phylogenies: 7 and 6 are the parameters we care
about

- Infer quick phylogeny on your alignment: ¢(r, 8|X) = p(X|r,0)

20



Other criteria

- AIC: minimise —27 4 2K

21



Other criteria

- AIC: minimise —2/ + 2K
. 2K(K+1
- AICc: AlC + 24Ut
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Other criteria

- AIC: minimise —2/ + 2K
. 2K(K+1
- AICc: AlC + 24Ut
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- DT: BIC + relative branch-length error
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Other criteria

- AIC: minimise —2/ + 2K
. 2K(K+1
- AICc: AlC + 24Ut
- BIC: minimise —2¢ + Klnn
- DT: BIC + relative branch-length error
- BF: ratio of marginal likelihoods

21



- What if everything fits poorly?

22



- What if everything fits poorly?
- Relative goodness of fit NOT absolute

22



- What if everything fits poorly?
- Relative goodness of fit NOT absolute

- Parametric Bootstrapping/Posterior Predictive Simulation
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- What if everything fits poorly?
- Relative goodness of fit NOT absolute
- Parametric Bootstrapping/Posterior Predictive Simulation

- If the model is reasonable then data simulated under should
resemble the empirical data

22



Does it REALLY matter?

nature
communications

Article | Open Access | Published: 25 February 2019
Model selection may not be a mandatory step for phylogeny
reconstruction

Shiran Abadi, Dana Azouri, Tal Pupka [ & Itay Mayrose (=]

Nature Communications 10, Article number: 934 (2019) ‘ Cite this article

[Abadi et al.,, 2019]

23



Does it REALLY matter?

Table 2 Percentage of accurate topologies

Strategy/ o [ [ C3
simulation set

AlC 50.51 50.44 50.64 36.50
AlCc 50.51 50.47 50.58 36.60
BIC 50.44 50.47 50.69 35.80
DT 50.47 50.44 50.68 35.70
dLRT 50.29 50.26 50.78 35.50
BF 50.62

GTR+I+G 50.82 50.94 511 36.40
IC 48.31 48.81 50.33 35.40
True model 50.17

[Abadi et al,, 2019]
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Does it REALLY matter?

Table 2 Percentage of accurate topologies

Strategy/ o [ [ C3
simulation set

AIC 50.51 50.44 50.64 36.50
AlCc 50.51 50.47 50.58 36.60
BIC 50.44 50.47 50.69 35.80
DT 50.47 50.44 50.68 35.70
dLRT 50.29 50.26 50.78 3550
BF 50.62

GTR+I+G 50.82 50.94 511 36.40
IC 48.31 48.81 50.33 35.40
True model 50.17

[Abadi et al., 2019]

- Criteria are inconsistent (BIC/AIC disagree in 62% of cases)
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- Different models change the distance matrix trivially.
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Does it REALLY matter?

Table 2 Percentage of accurate topologies

Strategy/ o [ [ C3
simulation set

AIC 50.51 50.44 50.64 36.50
AlCc 50.51 50.47 50.58 36.60
BIC 50.44 50.47 50.69 35.80
DT 50.47 50.44 50.68 35.70
dLRT 50.29 50.26 50.78 3550
BF 50.62

GTR+I+G 50.82 50.94 511 36.40
IC 48.31 48.81 50.33 35.40
True model 50.17

[Abadi et al., 2019]

- Criteria are inconsistent (BIC/AIC disagree in 62% of cases)
- Different models change the distance matrix trivially.
- ALL models lead to generally similar topologies.

23



- Likely still matters in complex cases

24



- Likely still matters in complex cases

- Definitely matter a lot for inferences on tree e.g. branch lengths
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- Likely still matters in complex cases
- Definitely matter a lot for inferences on tree e.g. branch lengths

- Pretty quick and easy to do these days, so why not do it?

24



Testing Branch Support




Pangolin or Bat?

BetaCoV/WH-Human_1_2019 §

BetaCoV/Wuhan/WIV07/2019 § :SARS-COV-Z

lm“\ BetaCoV/Wuhan/HBCDC-HB-01/2019 & | (2019-nCoV)
clade 3 ‘Be(aCoV/Wuhan/WHm/ZO!Q; batrelated
\‘ | BetaCoV/bal/Yunnan/RaTG13/2013 e coaro:-neaSireus
BetaCoV/pang 9 174 | Pang lin-related

BetaCoV/pangolin/Guangxi/P4L/2017 My | Coronavirus g
J g
Bat_bat-SL-CoVZXC21 s 3
Bat_HKU3-1 e 3
Bat_BICOV/273/2005 we §
— @

SARS-CoV_TW1 ; SARS-CoV

BtRs-BetaCoV/YN2018D wile

[ Human England-Qatar/2012 §

1 Human_mERS-Cov-EMC §

Human HKUt ]

MHV-A59_C12 4.

camel_HKU23_HKU23-368F W}
Human_HCoV-OC43/UK/London/2011 §

PRCV_ISU-1 8

I SADS-CoV/China/2017 Ml

Bat-CoV/AFCD307 =i

CoV/CA08-1/2008 W

Human_HCoV-229E/BN1/GER/2015 R

100

sniiaeuoioseydly

[Zhang et al., 2020] (disclaimer: better analyses exist but this was simplest)
25



-Parametric Boo pping in General

The bootstrap

(unknown) true value of
estimate of 0

Aa i

(unknown) true distribution emplrlcal dlstnbutlon of sample

Bootstrap repllcates

Distribution of estimates
of parameters

Slide from Joe Felsenstein
26



Bootstrapping Phylogenies

The bootstrap for phylogenies

sites

sample same number
of sites, with replacement

Original
Data
//;;/
/ /
| 1
Bootstrap | 1
sample | |
#1 !
\ \
\\
N
SN
~N
Bootstrap
sample
#2

sample same number
of sites, with replacement

Slide from Joe Felsenstein

(and so on)

27



Bootstrapping Phylogenies

Bootstrapped Trees

alignments

Alignment Resample the alignment

515621 m) >—<
123456 =

CatCOa e 364122 # <
ccgggt

gcggga — e—— 615343 m) >
gaacgt ——
414436 m) >—<

‘ Inferred tree

o Qw

28



Bootstrapping Phylogenies

The majority-rule consensus tree
E B E B
c F A F
E B c B E B
A>—<c E- Y 0 A>—<D
F D A F c F

How many times each partition of species is found:

Trees:

AEIBCDF 4
ACEIBDF 3 E B
ACEFIBD 1 0.8

ACIBDEF 1

AEFIBCD 1 A 0.6 06 -D
ADEFIBC 2 . F
ABCEIDF 3 C

Slide from Joe Felsenstein 29



Combining the Results

BetaCoV/WH-Human_1_2019 § :
BetaCoV/Wuhan/WIV07/2019 ‘ 1 'SARS-CoV-2

clade 4] BetaCoV/Wuhan/HBCDC-HB-01/2019 R | 1(2019-nCoV)
clade 3 BetaCoV/Wuhan/WH01/201 9;

: bat-related
] BetaCoV/bat/Yunnan/RaTG13/2013 e coronavirus

BetaCoV/Pangolin/Guangdong/1/2020 )
BetaC 179

lin-related

BetaCoV/pangolin/Guangxi/P4L/2017 My | Coronavirus d

‘Bat_bat-SL-CovzCas e §

Bat_bat-SL-CoVZXC21 e g

Bat_HKU3-1 e H

. Bat_BICOV/273/2005 e S
1 »

SARS-CoV_TW1 ; SARS-CoV
BtRs-BetaCoV/YN2018D wiie
1gof Human. England-Qatar/2012 §
1 Human_MERS-Cov-EMC §

Human HKUT ]
— MHV-AS9_C12 4am.
camel_HKU23_HKU23-368F M}
Human_HCoV-OC43/UK/London/2011 §

>

| PRCV_ISU-1 ik §
— SADS-CoV/China/2017 flilk F
— Bat-CoV/AFCD307 i g

o . CoV/CA08-1/2008 Y- 3
Human_HCoV-229E/BN1/GER/2015 ] | §

- N

0.05 “

[Zhang et al., 2020]
30



What are Non-Parametric Bootstraps Doing?

- Randomly reweighing the sites in an alignments

31
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- Randomly reweighing the sites in an alignments

« Probability of a site being excluded 1— 1n
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What are Non-Parametric Bootstraps Doing?

- Randomly reweighing the sites in an alignments
« Probability of a site being excluded 1— 1n

- Goal to simulate an infinite population (number of alignment
columns)

31



- Typically underestimates the true probabilities

32



- Typically underestimates the true probabilities

- i.e biased but conservative
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- Computationally demanding (redoing full inference for each
replicate)
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- Typically underestimates the true probabilities
- i.e biased but conservative

- Computationally demanding (redoing full inference for each
replicate)

- Assumes independence of sites
- Reliant on good input data

- Only answers to what extent does input data support a given
part of the tree

32



Parametric Bootstraps

computer estimation
simulation of tree

estimate
of tree

Joe Felsenstein

- Key for many more sophisticated tests.

33



Parametric Bootstraps

computer estimation
simulation of tree

estimate
of tree

\

Joe Felsenstein

- Key for many more sophisticated tests.

- Can be used to generate p-values, but non-trivial
33



Speeding-up Bootstraps

- Rapid Bootstraps (RBS): optimise branch length/model once
and focus only on topology

34
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from tree-search
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Speeding-up Bootstraps

- Rapid Bootstraps (RBS): optimise branch length/model once
and focus only on topology

- Re-sampling estimated log-likelihoods (RELL): keep site-wise ¢
from tree-search

- Ultrafast Bootstraps (UFBoot): Use trees from tree-search + RELL
- Always remember to recycle your computational results!

34



Is there a more efficient way?




Likelihood Tests

- Comparing the 3 nearest NNIs
(B) Second best, & to a given branch:

Worst, &,

(©)
i (D) Nun, 4 35




Likelihood Tests

- Comparing the 3 nearest NNIs
) Second best, £, to a given branch:
- Parametric aLRT: x? of § for
branch vs. closest NNIs

Worst,

;; ) Null, 4 35



Likelihood Tests

- Comparing the 3 nearest NNIs
) Second best, £, to a given branch:
- Parametric aLRT: x? of § for
branch vs. closest NNIs

- Non-parametric SH-aLRT
based on RELL

Worst,

;; ) Null, 4 35



Bayesian inference

. _ p(X]0,7)p(0)
p(0,7IX) = p(X)

36



Bayesian inference

. _ p(X]0,7)p(0)
p(0,7IX) = p()

- Use MCMC to deal with intractable p(X)
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Bayesian inference

. _ Pp(X19,7)p(0)
p(0,7IX) = p()

- Use MCMC to deal with intractable p(X)

- Frequency of clade in samples at stationarity: posterior
probability of clade

36



Bayesian inference

. — P(X[0.7)p(0)
p(0,7IX) = p()
- Use MCMC to deal with intractable p(X)

- Frequency of clade in samples at stationarity: posterior
probability of clade

- aBayes: estimate PP per branch from NNIs

36



ncutured acinum SW1.26 75 SW1 symbiont 46206547,

[Farame 1650/12 symbiont [AB260894.1]
fi660/12 1

heso/12 ;sr-

10+ 1660712 (1. 2,3, 8 5, 10,13, 16, 16, 19rev)

5 1660/12 (A1, 23, A5, A9, A10)

lieoo/12 isrev

ot o T 200ah sacass 00| ra0sest 1
Hcracinium pusilum (F120567;

[pesltured Crorai Ganes (Cs3 symbiont] [A8308536 1]
e TASE2Si 11

= z,,sé‘;,;g% o

ot s IS s
SR Rl

A e

palating (FIZ05830.1

Digyme

B e shora (Fisbssa 1)
s LG
e ShSphord (Kv333367
Criorells sorokiana [ABT1681C
Bl ! PRFD 814 sasgmer. 1)
st hantesent (/33341 11

Standard Approach: Use Multiple Methods

01
—

ITS2 PCR Samples
o, 10 I CCAP 1660/12
. I CCAP 1660/12 A

3 818, B1srey, 820) B Yad1giN

[Archetypal endosymbionts
© >90% BS & 0.9 PP

Bftbhosnas,s

- Costeropi stube 7.1
iRy e
A Zc, mii (B9S850 0o omzcss 1)

FRerehs bR SA

4
o s 90A3 (00660309 11

257 28 Gttt Tokabova 1983/2 [AY333646.1]
o Coccomyxa s 20 [AV253846 1)

SRR e )
be [:1: P i St
E— e %gé
SR Bt R SIESMALRSS

Clipsoidea (D3390

AP 507/1 [A1581013.1]
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Comparing Trees




Competing Hypotheses

BotaCoV/WH-Human_1_2019 § H
BetaCoV/WuhanWIV07/2019 {8ARS-Cov:2
Gaiad] | oetscovmunaniiecoc 012019 | (2019-nCoV)
[ctade 3] BetaCoV/Wuhan/WH01/2019% :
[ciade 2] BetaCoV/bat/Yunnan/RaTG13/2013 e batrelated
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i coronavirus
! pangolin-related
v | coronavirus gj
'Bat_bat-SL-CoVZC15 wie E
Bat_bat-SL-CoVZXC21 wi s
Bal_HKUS-1 e H
Bat BICOV/273/2005 we 5
- SARS.Cov.TW1 | SARS-CoV @
BtRs-BetaCoV/YN2018D =
Human_England-Qatar/2012 §
[ tuman.coonavivs. kU1 3
MHV-AS9_C12 4mm.
‘—| I: camel_HKU23_HKU23-368F Wl
Human_HCoV-0C43/UK/London/2011 § N
PROV_ISU-1 flk 5
- H
-~ S
\of— COVICA0E-1/2005%L. ]
Human_oov-zzscemcenzorsg | §
G

Rival Hypotheses

- ((Human, Bat), Pangolin)

- ((Human, Pangolin), Bat)
38



Rejecting Species Tree

Species Gene

= IOGmMMmMmOOD>
— IT mMOOT>»0O
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Qualitative Comparison
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Favours?|:| D |:| I:I I:I I:‘

- 4 sites favour the red tree, 2 favour the blue
. (Z)pkm —p)nk

- 4outof 6 p=0.6875

- 40 out of 60 p = 0.0124

- 400 out of 600 p = 2.3 %1071
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More robust approach

- Null: if no sampling error (infinite data) T; and T, would explain
the data equally well.
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More robust approach

- Null: if no sampling error (infinite data) T; and T, would explain
the data equally well.

© 0Ty, To [ X) =2[(Th | X) — (T2 | X)]
- Expectation under null: E[6(T;,T, | X)] =0
- Slides modified from Mark Holder
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Using our SARS-CoV-2 example

- Ty is ((Human, Bat), Pangolin) ¢(T; | X) = —7363.296

5(Ty, Ty | X) = —3.18 E(5)
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Getting a p-value?

To get the P-value, we need to know the probability:

Pr (|6(T1,T2 1 X)| > 3.18‘Ho istrue)

§(Ty, Ty | X) = —3.18 E(5) —6(Ty, Ty | X) =3.18
<— —
| T T T ! T T T I
30 20 1.0 0.0 10 20 30
6(Tla T2 ‘ X)
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Kishino-Hasegawa Test

- Examine the difference in ¢ for each site: 6(T4, T, | X;) for site i.
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Kishino-Hasegawa Test

- Examine the difference in ¢ for each site: 6(T4, T, | X;) for site i.

- Note that the total difference is simply a sum:

M
ST, T | X) = 6(Th, T | X)

=1

- The variance of §(Ty, T, | X) will be a function of the variance in
“site” §(Ty, T, | X;) values.
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KH Test - the variance of §(T;, T, | X)

To approximate variance of §(T4, T | X) under the null, we could:

- Use assumptions of Normality (Central Limit Theorem)

46



KH Test - the variance of §(T;, T, | X)

To approximate variance of §(T4, T | X) under the null, we could:

- Use assumptions of Normality (Central Limit Theorem)

- Use bootstrapping to generate a cloud of pseudo-replicate
0(Tq, T, | X*) values, and look at their variance
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Many RELL bootstraps later:
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KH Test - ‘centering’

- Hyp gives us the expected value:

]EHo [5(7—7/ T | X)] =0
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KH Test - ‘centering’

- Hyp gives us the expected value:
Ey, [6(T1, T2 | X)] =0

- Bootstrapping gives us a reasonable guess of the variance
under Hy

- By subtracting the mean of the bootstrapped 6(T4, T, | X*)
values, we can create a null distribution.

- For each of the j bootstrap replicates, we treat:
6(To, T | XY = 8(T1, Ty | X¥)

as draws from the null distribution.

48



Frequency
200 400 500 600 700
1 1 1 1 ]

100
I

-20 -10 0 10 20 30

O(To, Ty | XY = 5(Ty, T2 | X¥)
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Approximate null distribution with tails (absolute value > 3.18)
shown:

600 800
I |

Frequency
400
1

P-value = 0.46

200
I

-20 -10 [ 10 20 30
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Downsides of the KH-test

- Multiple Comparisons: lots of trees increases the variance of
5(7\-a T1 | X)
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Downsides of the KH-test

- Multiple Comparisons: lots of trees increases the variance of
5(7\-a T1 | X)

- Selection bias: Picking the ML tree to serve as one of the
hypotheses invalidates the centering procedure of the KH test

« Ey, [0(T4, T2 | X)]! = 0 if choosing best vs rest

51



Alternative tests

- Shimodaira-Hasegawa Test:
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Alternative tests

- Shimodaira-Hasegawa Test:

- Compares candidate tree sets

- Ho = all topologies equally good

- Very conservative when the number of candidate trees is large
- Can be corrected with weighted SH-test overcomes.

- Approximately Unbiased Test:

- Achieves weighting by varying bootstrap size for each tree.

- Better for larger comparisons, but slow.

- Swofford-Olsen-Waddell-Hillis:

- Same idea but uses parametric bootstraps instead.

- Sensitive to model misspecification
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- Phylogenies can be wrong for many reasons: bad data,
sampling, pesky evolution
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- Phylogenies can be wrong for many reasons: bad data,
sampling, pesky evolution
- Standard model selection principles apply to selection of
sequence evolution models
- Higehst likelihood model penalised by complexity
- Matters little for some things and lots for others
- Bootstrapping in its various guises is a good way to estimate
robustness of your branches
- Likelihood tests offer a quicker alternative
- Branch support is built into Bayesian inferences
- Use multiple lines of evidence
- You can compare trees statistically, but:

- Tree-space makes things non-trivial
- Computationally demanding and easily biased
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Questions?
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