Phylogenetics Tutorial 1:

Making Phylogenies

Finlay Maguire

Faculty of Computer Science

- 1. Overview
- 2. Installation
- 3. Data
- 4. Multiple Sequence Alignemnt
- 5. Trimming
- 6. Approximate ML Tree
- 7. Maximum-Likelihood Tree
- 8. Phylogenomics

Overview

Protein Phylogeny Aims

- Get a protein
- Using pairwise alignment to find potential homologs
- Perform a multiple sequence alignment
- \cdot Trim the alignment
- Infer a NJ distance phylogeny
- Infer an approximate Maximum Likelihood phylogeny
- Infer an accurate Maximum Likelihood phylogeny
- Compare the trees

- Get genomes
- Find core genome
- Extract SNPs
- Infer a Maximum Likelihood phylogeny
- Visualise Phylogeny

- mafft
- trimal
- aliview
- FastTree2
- iqtree
- FigTree
- prokka
- roary
- snp-sites

Installation

```
If you don't have miniconda
https://docs.conda.io/en/latest/miniconda.html
conda create -n phylo -c bioconda mafft trimal prokka
                  fasttree igtree roary snp-sites
conda activate phylo
or if older miniconda version:
source activate phylo
```

Unfortunately, not everything is in bioconda:

- AliView
 https://github.com/AliView/AliView/releases
- FigTree

https://github.com/rambaut/figtree/releases

Data

Figure 1: High-quality protein reference database: swiss-prot http://www.uniprot.org

Figure 2: Choose 'Gene Ontology' and 'biological process'

Starting Sequence

detoxification (798 results) Z

- 😐 toxin catabolic process (143 results) 🛛 Z
 - mycothiol-dependent detoxification (4 results)
 - detoxification of zinc ion (5 results)
- detoxification of nitrogen compound (20 results) Z
- detoxification of inorganic compound (99 results) Z
 - detoxification of arsenic-containing substance (8 results)
- cellular detoxification (560 results) Z

Figure 3: Go down to 'detoxification' and expand

Figure 4: Select '8 results' next to 'detoxification of arsenic'

Using BLAST to find related sequences

Figure 5: Select the C. elegans sequence and BLAST

BLAST

Job status: RUNNING

Running blastp job against UNIPROTKB for 15s

lob information

Query sequence¹

>splP38632|ASNA_CAEEL ATPase asna-1 OS=Caenoshabditis elegans 0X=6239 GN=asna-1 PE=1 SV=1 MSDQL8ASINILEQKTLNNFVGGKGGVGKTTCSCSLAQLVKRERVLLISTDPawHI SDAFSGKFThrTUFVEFKNLFNEEDSNPWGECVERMITEEHLQNAQAGEGSGGFSMG

Figure 6: Wait...

Using BLAST to find related sequences

		i Align	= Download	b Add to basket	e Columns		剩 1 to 25 of 250 🕨
	Ali	gnment	Downloa	ad selected (10)	,	11 result(s) salected (Clear Selection)	Info
	0	Query: spl	Download all (250)			64226552763500RDED0012ER9	
	AS	NA_CAEE	Format: F Compres Preview first	sed • Uncompresso	ed Go	ment	E-value: 0.0 Score: 1,759 Ident.: 100.0%
•	AO	A043G5UM79_9FELO - ATPase Chi-asma-1 - Caenorhabditis n View alignment					
	AS	ASNA, CAEBR - ATPase asna-1 - Caenorhabditis b View alignment					E-value: 0.0 Score: 1,621 Ident.: 91.8%

Figure 7: Download 10 sequences across a range of similarity

Multiple Sequence Alignemnt

mafft-linsi arsenic.faa > arsenic.afa

Trimming

Inspecting the alignment

java -jar aliview.jar

trimal -nogaps -in arsenic.afa -out arsenic_nogaps.mask

trimal -automated1 -in arsenic.afa -out arsenic_auto.mask

java -jar aliview.jar

Approximate ML Tree

FastTree -lg arsenic_auto.mask > arsenic_dist.tree

FigTree

Maximum-Likelihood Tree

• Generate 100 parsimony trees

- Generate 100 parsimony trees
- Optimise all 100 with lazy SPR moves

- Generate 100 parsimony trees
- Optimise all 100 with lazy SPR moves
- Collect resulting unique topologies and optimise branch lengths

- Generate 100 parsimony trees
- Optimise all 100 with lazy SPR moves
- Collect resulting unique topologies and optimise branch lengths
- Select top 20 by likelihood

- Generate 100 parsimony trees
- Optimise all 100 with lazy SPR moves
- Collect resulting unique topologies and optimise branch lengths
- Select top 20 by likelihood
- Perform hill-climbing NNI (stochastic followed by hill-climbing) on each and optimise

- Generate 100 parsimony trees
- Optimise all 100 with lazy SPR moves
- Collect resulting unique topologies and optimise branch lengths
- Select top 20 by likelihood
- Perform hill-climbing NNI (stochastic followed by hill-climbing) on each and optimise
- Retain top 5 topologies as candidate trees

- Generate 100 parsimony trees
- Optimise all 100 with lazy SPR moves
- Collect resulting unique topologies and optimise branch lengths
- Select top 20 by likelihood
- Perform hill-climbing NNI (stochastic followed by hill-climbing) on each and optimise
- Retain top 5 topologies as candidate trees
- Randomly perturb candidates (stochastic NNI) and optimise (hill-climbing)

- Generate 100 parsimony trees
- Optimise all 100 with lazy SPR moves
- Collect resulting unique topologies and optimise branch lengths
- Select top 20 by likelihood
- Perform hill-climbing NNI (stochastic followed by hill-climbing) on each and optimise
- Retain top 5 topologies as candidate trees
- Randomly perturb candidates (stochastic NNI) and optimise (hill-climbing)
- If new tree is better than top candidate, replace

- Generate 100 parsimony trees
- Optimise all 100 with lazy SPR moves
- Collect resulting unique topologies and optimise branch lengths
- Select top 20 by likelihood
- Perform hill-climbing NNI (stochastic followed by hill-climbing) on each and optimise
- Retain top 5 topologies as candidate trees
- Randomly perturb candidates (stochastic NNI) and optimise (hill-climbing)
- If new tree is better than top candidate, replace
- If top candidate doesn't change after 100 random perturbations then output.

iqtree -mset LG,JTT,WAG -s arsenic_auto.mask

Note: IQTree does output a neighbour joining distance tree too (.bionj).

FigTree

Phylogenomics

Download the 6 listeria genomes

wget finlaymagui.re/assets/listeria_genomes.tar.gz
tar xvf listeria_genomes.tar.gz

```
For genome GCA00008258:
```

prokka --kingdom Bacteria --outdir prokka_GCA_000008285

--genus Listeria --locustag GCA_000008285

GCA_000008285.1_ASM828v1_genomic.fna

Repeat for all genomes

```
mkdir annotations
cp */*.gff annotations
roary -f core_genome -e -n -v annotations/*.gff
```

snp-sites -o listeria_snps.fna

core_genome/core_gene_alignment.aln

iqtree -mset GTR -s listeria_snps.fna

Figure 8: Roary Tutorial

Questions?