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Plankton are an importand part of the biosphere, comprising half of global

: Here we can see the convolutional network classifying an image. Each
carbon fixation. The population composition of plankton is a key indicator Convolutional Neural Network hanel shows the activation of the neurons in response to applying their
of ecosystem function in marine environments. Marine biologists at the For image classification tasks, convolutional networks are state of the art. cernel the feedfoward inputs.

Hatfield Marine Science Center, and elsewhere can collect many thousands L .
. . . . . Our initial structure was based on the successful AlexNet design. After
images of these microscopic organisms every day, but classifying these . . . . . .
experimenting with many proposed changes, including siamese networks, | e

captured organisms remains time consuming. To automate this process,
the researchers sought a solution through a machine learning competition,
hosted through Kaggle.

deeper networks and alternative pooling strategies, our best performing
network differed from AlexNet only by one additional convolutional layer. i
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Raw Data: Plankton Images
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The classes have an intrinsic hierarchy given by their visual relationships On the right, we can see the output probabilities for each of the classes
I (below left). This could be useful for providing additional information in the and superclasses in the hierarchy.
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Our final competition submission was an ensemble average of the output
probabilities from three networks. Two had the same architecture but
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