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Dangers of Spreadsheets



JP Morgan ‘London Whale’

[JPMorgan and Chase, 2013]

2



JP Morgan ‘London Whale’

https://www.theguardian.com/business/2013/sep/19/jp-morgan-920m-fine-london-whale
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Data Mangling in Bioinformatics

[Zeeberg et al., 2004]
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Data Mangling in Bioinformatics

[Ziemann et al., 2016]
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Austerity as a macroeconomic policy

[Reinhart and Rogoff, 2010a, Reinhart and Rogoff, 2010b]

[Herndon et al., 2014]
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Austerity as a macroeconomic policy

[Herndon et al., 2014]
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And many more.

• Omission of a minus sign which cost Fidelity Magellan Fund 2.45
billion US dollars (in 1995).

• The London 2012 oversold synchronised swimming by 10,000
tickets.

• Kern County, California lost records of taxable property worth
1.26 billion US dollars.

• Mouchel (Outsourcing specialist) lost £4.3M due to pension
deficit error.

• The UK Security Service (‘MI5’) bugged the wrong telephones
1,061 times.

• Oxford University History Faculty mixed up test scores and
applicants.

• See http://www.eusprig.org/horror-stories.htm for a
non-comprehensive list!

• Meta-review suggests that 88% of all spreadsheets have errors
[Panko, 2008].
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Why are Spreadsheets Dangerous?

• Difficult to version control

• Non-linear dependencies (formulas all over the place)
• Hidden formatting/data.
• Automated formatting of data
• A billion users (according to Microsoft).
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Tidy Data



So what is the solution?

• Simple text based Machine-readable formats (e.g. CSV/TSV
instead of XLSX)

• No manual editing after initial entry
• Access via scripting (e.g. ‘dplyr’, ‘pandas’, etc.)
• Version Control (e.g. git, dat) of analysis scripts and dataset
• Tidy Data formatting
• Consistent datatypes
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Tidy Data

[Wickham, 2014]
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‘dplyr’

• Seven ‘verbs’ that can be combined to do pretty much any
operation

• Intuitive: say you want to select rows ‘a’ and ‘b’ from a table
then filter out values less than 10

• table %>% select('a', 'b') %>% filter(a >= 10)
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‘dplyr’ example

https://blog.exploratory.io/filter-data-with-dplyr-76cf5f1a258e

• Say we want to know how many United Airline (UA) or American
Airline (AA) flights leave from NYC

• flights %>% filter(CARRIER %in% c(“UA”, “AA”)) %>%
count(CARRIER)

15

https://blog.exploratory.io/filter-data-with-dplyr-76cf5f1a258e


‘dplyr’ example

https://blog.exploratory.io/filter-data-with-dplyr-76cf5f1a258e

• Say we want to know how many United Airline (UA) or American
Airline (AA) flights leave from NYC

• flights %>% filter(CARRIER %in% c(“UA”, “AA”)) %>%
count(CARRIER)

15

https://blog.exploratory.io/filter-data-with-dplyr-76cf5f1a258e


‘dplyr’ example

https://blog.exploratory.io/filter-data-with-dplyr-76cf5f1a258e

16

https://blog.exploratory.io/filter-data-with-dplyr-76cf5f1a258e


Machine Learning



Overview

• What is Machine Learning?

• Unsupervised Learning

• Clustering
• Dimensionality Reduction

• Supervised Learning

• Regression
• Classification
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What is Machine Learning?

https://xkcd.com/1838/

18
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What is Machine Learning?

• Algorithms which can learn from data

• Artificial Intelligence?
• Automatic pattern recognition
• ‘Rebrand’ of statistics
• Applied laziness!
• Important tool to deal with large amounts of data (e.g. ‘big data’)
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Massive Explosion of Popularity

20



Lots of Economic Activity

Economist via https://greydanus.github.io/2017/12/23/nips/

21
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Big Data is Big Money

• Google DeepMind’s “staff costs” were $138 million for 400
employees. $345,000 per employee [Metz, 2017].

• Ph.D. candidate job offer over $1 million a year
[Markoff and Lohr, 2016].

• Apple, Google, Microsoft, Intel, Uber, Facebook, Amazon all
running their own labs [Metz, 2017].
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Tech Industry Heavy

modified from https://prlz77.github.io/iclr2018-stats-3/
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Possibly Over-hyped

https://greydanus.github.io/2017/12/23/nips/
24
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Why this explosion? Data

http://allennance.com/2013/07/dataexplosion
25
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Why this explosion? Computing Power

https://ourworldindata.org/wp-content/uploads/2013/05/Transistor-Count-over-time.png
26
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Why this explosion? Algorithms

https://www.slideshare.net/deview/251-implementing-deep-learning-using-cu-dnn/4
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Unsupervised Learning



What is Unsupervised Learning?

• You have a pile of data and you want to find patterns in it.

• These patterns can be used to find groupings within the data.
• Find a simpler/smaller version of the same data.
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Clustering

https://mubaris.com/2017/10/01/kmeans-clustering-in-python/
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Story Emotional Arc Analysis

Uniform length seg-

ments of the text

Base text from 

Project Gutenberg

Hedonometric

analysis

Average

happiness

% of text

sliding window across text

[Reagan et al., 2016] 30



Harry Potter Example

[Reagan et al., 2016]
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Emotional Arc Clusters
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Top Stories:

[Reagan et al., 2016]
“Rags to riches” (rise), “Man in a hole” (fall-rise), “Cinderella”
(rise-fall-rise)
“Tragedy” (fall), “Icarus” (rise-fall), “Oedipus” (fall-rise-fall) 32



Dimensionality Reduction

http://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html

33
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Aside: Visualisation is important

http://www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html 34

http://www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html


Supervised Learning



What is Supervised Learning?

• You have labelled data.

• You want to predict the label for new data that isn’t labelled.
• Those labels are another number: regression.
• Those labels are classes: classification.
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Regression

https://eli.thegreenplace.net/2016/linear-regression/
36

https://eli.thegreenplace.net/2016/linear-regression/


Fitting a simple line

https://eli.thegreenplace.net/2016/linear-regression/
37
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Which is the best model?
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Classification

Assigning a set of new observations to a predefined category/class,
using a predictive model trained on observations whose
category/class is known

39



Iris Classification Features

http://www.ashbooth.com/wp-content/uploads/2014/07/class2.jpg
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“Deep Learning”

MNIST dataset

41



Dataset selection for ML



So you want to use ML?

• Define your problem.

• Identify the type of data that might help solve this.
• Work out what format you are collecting.
• Balanced data collection.
• Data leakage.
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Balanced data collection

• Say you have 95 examples of class A and 5 example of class B.

• How accurate is a classifier that just says all are class A?
• 95% (not bad in a lot of cases).
• Obviously an extreme example but a common problem.
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ML is lazy: Apocryphal Tank Example
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ML is lazy: Maxillofacial Surgery Success Rate

http://thazhathdentalclinic.com/oral-and-maxillofacial-surgery.html
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ML is lazy: Ejected Fraction Estimation

NDSBII Dataset
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Axioms of Machine Learning

• Crap in, crap out.

• ‘If you torture data long enough it will confess to anything’:
Ronald Coase

• ‘A sufficiently elaborate analysis process can always lend an air
of legitimacy’: Chris Laws
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Conclusion



Take-homes

• Extreme care must be taken when using excel.

• Use tidy data practices and always use version control.
• ML is a big topic and very powerful.
• Effective ML requires careful data management.
• ML is inherently lazy so take care with the input.
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Questions?
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