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Overview

• Characterising heterogeneous DNA/RNA samples:

• Coloured de Bruijn Graphs (e.g. Cortex, Mykrobe)
• Succinct data structures (e.g. Vari)

• A taxonomy of graphs
• Searching large databases using reference graphs:

• k-mer graph indexing (e.g. groot, BlastFrost)
• Burrows-Wheeler Transform extensions (e.g. Variation Graph
toolkit GCSA)
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What is heterogeneity



Mixed-infections

HIV ‘super-infection’ [Redd et al., 2013]
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Within-host evolution

Within host evolution of Staphylococcus aureus [Didelot et al., 2016]
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Polyploidy

Polyploidy and whole genome duplication in Paramecium [Aury et al., 2006]
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Polyploidy

Polyploidy and whole genome duplication in Paramecium [Aury et al., 2006]
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Cancer evolution

Tumour lineage tracking [Gawad et al., 2016]
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Transcriptomics

All transcripts of the EEF1A1 gene in Ensembl v80 [com, 2018]
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Characterising heterogeneity



Single-cell methods

[Gawad et al., 2016]

• Oǒten more like
‘a few’-cell
sequencing

• Ploidy and
viruses are still
difficult

• Noisy/requiring
lots of
expensive
samples
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Reference based variant calling

Read-mapping and variant calling bit.ly/2v6ZgTs
8

bit.ly/2v6ZgTs


Choosing a reference?

• Whatever other people used?
• Try a few and compare?
• Find closest sequence (ANI, MASH etc.)
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Where this fails: outside core-genome

[McInerney et al., 2017]
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Where this fails: structural variation

[Weckselblatt and Rudd, 2015]
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Where this fails: divergent strains

[Gregor et al., 2016]
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Assembling variation



Assembly

[Gregor et al., 2016]

13



de Bruijn graph recap

G = (V, E)
v ∈ V : v = k-mer x

∃e(v→ v′) ∈ E ⇐⇒ x(1, k) = x′(0, k− 1)

homolog.us/Tutorials/book4/p2.1.html 14

homolog.us/Tutorials/book4/p2.1.html


Resolving a simple SNP
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Keeping track of k-mers
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Untangling the knot: coloured de Bruijn graphs

G = (V, E, C)

v ∈ V : v = k-mer x

∃e(v→ v′) ∈ E ⇐⇒ x(1, k) = x′(0, k− 1)

Given n samples/reads/k-mers:

C = c1, c2, ...cn

∀v ∈ V : ∃c(v) ∈ C

∀e ∈ E : ∃c(e) ∈ C

[Iqbal et al., 2012]
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SNP in low-complexity region
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SNP in low-complexity region
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Clustered variants
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Clustered variants
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Multiple reads-Multiple variants

[Alipanahi et al., 2020]
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Cortex Assembler

[Iqbal et al., 2013]

• Diploid individual (blue) with a reference sequence (red)
• Tracking longest contig
• Variant likelihood calculations based on coverage
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Messy details not covered

• Incorporating paired-end information
• Probabilistic colouring
• Details of using coverage and disambiguating error and variation
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Downsides of coloured graphs: huge

• 88 metagenomic samples from Cattle feedlots
[Noyes et al., 2016]

• 4 billion paired-end reads
• 41 billion 32-mers
• Storing k-mer:read pairing even as single bit would need 285
petabytes of space
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Succinct/Compacted coloured de Bruijn graphs

[Holley and Melsted, 2019]

• Compact maximal
non-branching
paths into untigs

• Use probabilistic
data structures e.g.
bloomfilters,
minhash sketches,
minimisers

• AKA make things
more approximate
but smaller!
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Using coloured de Bruijn graphs



Use-case: identifying AMR genes

[Bradley et al., 2015]
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Mykrobe

[Bradley et al., 2015]
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‘Real Example’

Multi-Strain Mycobacterium tuberculosis Infection Assembly Graph (one
strain TDR the other totally susceptible)
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‘Real Example’

Multi-Strain Mycobacterium tuberculosis Infection Assembly Graph (blue:
TDR, red: totally susceptible)
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‘Real Example’

Multi-Strain Mycobacterium tuberculosis Infection Assembly Graph (blue:
TDR, red: totally susceptible)
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How well does this work in practice?

Predicting antimicrobial susceptibility in 3,206 M. tuberculosis
samples [Hunt et al., 2019]
Method Paradigm MB Min Sensitivity Specificity
Mykrobe cdBG 1057 3.2 91.64 98.21
KvarQ Motif 38 22.2 80.81 98.03
MTBSeq BWT 12201 41.6 82.68 97.65
SPAdes Assembly 18125 102.4 90.4 97.91
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Transcript Quantification

[Bray et al., 2016]
31



Kallisto pseudoalignment

[Bray et al., 2016]
32



Taxonomy of graphs



Sequence graphs

• de Bruijn graphs:

• de Bruijn graphs G = (V, E)
• compacted/succint de Bruijn graphs G = (V, E) where V = unitig
• coloured de Bruijn graphs G = (V, E, C)
• probabilistic coloured de Bruijn graphs G = (V, E, C) where C = p(C)

• Variation graphs:

• de Bruijn graph paths G = (V, E, P) where P = all the paths through
G

• compacted/coloured/probabilistic de Bruijn graphs G = (V, E, C
where pi = (v ∈ V : c(v) = ci)

• looser sequence graphs G = (V, E, P) where V = any sequence and
E = adjacency in the sequence

• Other types of graph:

• Wheeler graphs (generalised structure)
• Breakpoint graphs [Lin et al., 2014] = coloured de Bruijn graphs
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FASTG graph format

AATCGACAGCCGG
AATCGATAGCCGG

FASTG format (http://fastg.sourceforge.net/):

#FASTG:begin;
#FASTG:version=1.0:assembly_name="SNP example";
>chr1:chr1;
AATCGA[1:alt|C,T]CAGCCGG

34
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GFA sequence graph format

AATCGACAGCCGG
AATCGATAGCCGG

GFA format (http://gfa-spec.github.io/GFA-spec/GFA2.html):

H VN:Z:1
S 1 AATCGA LN:i:6
S 2 C LN:i:1
S 3 T LN:i:1
S 4 AGCCGG LN:i:6
L 1 + 3 + 0M
L 1 + 2 + 0M
L 2 + 4 + 0M
L 3 + 4 + 0M
P chr1a 1+,2+,4+ 6M,1M,6M
P chr1b 1+,3+,4+ 6M,1M,6M

35

http://gfa-spec.github.io/GFA-spec/GFA2.html


Bandage

[Wick et al., 2015]
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Comparing sequences to
databases more efficiently



Databases are growing rapidly

7 trillion bases in 1.2 billion sequences https://www.ncbi.nlm.nih.gov/genbank/statistics/

37
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Searching databases

Our ability to search these databases approximately scales:

• Processing the query: (M = size of input sequence, K = word-size)
O(KM)

• Scanning the database for partial matches (N = size of database)
O(KN)

• Extending the match O(MN)

38



All NDM sequences
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Collapsing NDM into a variation graph

40



How do we query these graphs?



K-mer Indices



Groot

[Rowe and Winn, 2018]
41



Creating and indexing variation graphs

[Rowe and Winn, 2018]

• Cluster database, align clusters, build variation graphs

• Traverse graph using sliding window and decomposed to k-mers
• Create a MinHash sketch for each window
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Seeding queries

[Rowe and Winn, 2018]

• Query reads are quality checked, trimmed and sketched

• Read sketch queried against the index using additional Locality
Sensitive Hashing

• Seeds are ranked by Jaccard Similarity estimates
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MinHash Jaccard similarity

[Ondov et al., 2016]
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Aligning queries

[Rowe and Winn, 2018]

• Hierarchical local alignment
• Check exact matches, check partial exact, traverse graph
• Score traversal to classify an alignment (unique, perfect, partial,
etc.)
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BlastFrost: Similar but for bigger sequences!

[Luhmann et al., 2020]
46



Downsides of k-mer hashing-based methods

• Static table size means resizing is costly - bad for dynamic
reference

• Search performance reduces when table capacity is reached
• Sensitive to k-mer size and sequencing error
• Aligns identical sequences multiple times
• Memory footprint can be high

47



Burrows Wheeler Transform to
the rescue



Disclaimer

This will skip over:

• FM-indices
• Wheeler graphs
• Fix-free parsing
• Note: BWT on graphs is still more theoretical CS than active use

48



Burrow-Wheeler Transform

Ben Langmead
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Burrow-Wheeler Transform

Ben Langmead
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Searching the suffix tree for a motif

• Label leaves by string position/depth
• Search for pattern ”AT”
• Leaves in the subtree we reach are the location of that pattern

T

A

TAGGCATTAG

GCATTAG

TTAGGCATTAG

A

7 2 5 6 1 8 3 4

G A T T A C A T
1 2 3 4 5 6 7 8

Travis Gagie 50
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Extending this to collections of strings

• Order strings and label leaves by overall depths
• Search for pattern ”AT”
• Leaves in the subtree we reach are the location of that pattern

10 12 9 2 11 8 7 1 5 13 3 6 4

TA

G TTAA

C
T
T

C
T
T

C AC T

GG AG

S =

G A T T , T T C C A , A C A T
1 2 3 4 5 6 7 8 9 10111213


C
A

Travis Gagie
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Graphs are a collection of paths

If G is a de Bruijn graph (dBG) then we can sort the vertices into the
co-lexicographic order of the strings labelling walks reaching them —
all the strings labelling walks reaching a k-tuple α end with α — and
so index G.

$$ $$

CA

GA

AC

CC

TC

$G

AT

TT

CA

GA

AC

CC

TC

$G

AT

TT

$A $A

T

T

T

A

A

A

C

C

C

G

A

A

A

C

C

C

G

T

T

T

A
$$

$G

$A

GA AT

CAAC

TT

CC

TC

in-degrees: 0, 1, 2, 1, 1, 1, 1, 1, 2, 1

out-degrees: 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 → 2, 19

BWT: AGCTTAACATC

→ 0, 1, 2, 15, 2, 1

A

Travis Gagie
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How well do reference variation
graphs work?



BlastFrost scaling

[Luhmann et al., 2020]
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BIGSI indexing of ENA

[Bradley et al., 2019]

• BIGSI: probabilistic coloured de Bruijn graph
• Indexing all bacterial, viral and parasitic reads in ENA ( 500,000
sets, 170TB of data)

• 1.5TB index that be queried near instantaneously
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Beware: not always good

Simulated metagenome AMR family classification
55



Summary



Conclusions

• Coloured de Bruijn graphs represent variation within assemblies

• Powerful way of performing variation aware assembly (e.g.
Cortex/Mykrobe)

• Succint cdBGs are a way to make them less space-intensive (e.g.
Vari)

• Variation graphs in general (including cdBGs like BIGSI) are an
efficient way to represent large redundant reference databases

• K-mer hashing and probabilistic data-structures allow efficient
querying of these references (e.g. groot, blastfrost)

• K-mer methods highly parameter dependent and noise sensitive
• Burrows-Wheeler Transform (generalised as wheeler graphs) can
also be used to index/query graphs (e.g. VG-toolkit
GCSA/wheeler graphs)
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